Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with increasing prevalence among the ageing population, necessitating early and accurate diagnosis for effective disease management. In this study, we present a novel hybrid deep learning framework, AlzhiNet, that integrates both 2D convolutional neural networks (2D-CNNs) and 3D convolutional neural networks (3D-CNNs), along with a custom loss function and volumetric data augmentation, to enhance feature extraction and improve classification performance in AD diagnosis. According to extensive experiments, AlzhiNet outperforms standalone 2D and 3D models, highlighting the importance of combining these complementary representations of data. The depth and quality of 3D volumes derived from the augmented 2D slices also significantly influence the model's performance. The results indicate that carefully selecting weighting factors in hybrid predictions is imperative for achieving optimal results. Our framework has been validated on the magnetic resonance imaging (MRI) from Kaggle and MIRIAD datasets, obtaining accuracies of 98.9% and 99.99%, respectively, with an AUC of 100%. Furthermore, AlzhiNet was studied under a variety of perturbation scenarios on the Alzheimer's Kaggle dataset, including Gaussian noise, brightness, contrast, salt and pepper noise, color jitter, and occlusion. The results obtained show that AlzhiNet is more robust to perturbations than ResNet-18, making it an excellent choice for real-world applications. This approach represents a promising advancement in the early diagnosis and treatment planning for AD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12539-025-00764-wDOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
8
convolutional neural
8
alzhinet
5
alzhinet traversing
4
traversing 2d-cnn
4
2d-cnn 3d-cnn
4
3d-cnn early
4
early detection
4
diagnosis
4
detection diagnosis
4

Similar Publications

Introduction: We compared and measured alignment between the Health Level Seven (HL7) Fast Healthcare Interoperability Resources (FHIR) standard used by electronic health records (EHRs), the Clinical Data Interchange Standards Consortium (CDISC) standards used by industry, and the Uniform Data Set (UDS) used by the Alzheimer's Disease Research Centers (ADRCs).

Methods: The ADRC UDS, consisting of 5959 data elements across eleven packets, was mapped to FHIR and CDISC standards by two independent mappers, with discrepancies adjudicated by experts.

Results: Forty-five percent of the 5959 UDS data elements mapped to the FHIR standard, indicating possible electronic obtainment from EHRs.

View Article and Find Full Text PDF

Cognitive impairment and dementia, including Alzheimer's disease (AD), pose a global health crisis, necessitating non-invasive biomarkers for early detection. This review highlights the retina, an accessible extension of the central nervous system (CNS), as a window to cerebral pathology through structural, functional, and molecular alterations. By synthesizing interdisciplinary evidence, we identify retinal biomarkers as promising tools for early diagnosis and risk stratification.

View Article and Find Full Text PDF

Introduction: We developed and validated age-related amyloid beta (Aβ) positron emission tomography (PET) trajectories using a statistical model in cognitively unimpaired (CU) individuals.

Methods: We analyzed 849 CU Korean and 521 CU non-Hispanic White (NHW) participants after propensity score matching. Aβ PET trajectories were modeled using the generalized additive model for location, scale, and shape (GAMLSS) based on baseline data and validated with longitudinal data.

View Article and Find Full Text PDF

Plants, Pills, and the Brain: Exploring Phytochemicals and Neurological Medicines.

Int J Plant Anim Environ Sci

August 2025

Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.

Neurological disorders, such as Alzheimer's disease, Parkinson's disease, epilepsy, spinal cord injuries, and traumatic brain injuries, represent substantial global health challenges due to their chronic and often progressive nature. While allopathic medicine offers a range of pharmacological interventions aimed at managing symptoms and mitigating disease progression, it is accompanied by limitations, including adverse side effects, the development of drug resistance, and incomplete efficacy. In parallel, phytochemicals-bioactive compounds derived from plants-are receiving increased attention for their potential neuroprotective, antioxidant, and anti-inflammatory properties.

View Article and Find Full Text PDF

Introduction: Simple screening tools are critical for assessing Alzheimer's disease (AD)-related pre-dementia changes. This study investigated longitudinal scores from the Quick Dementia Rating System (QDRS), a brief study partner-reported measure, in relation to baseline levels of the AD biomarker plasma pTau217 in individuals unimpaired at baseline.

Methods: Data from the Wisconsin Registry for Alzheimer's Prevention (N = 639) were used to examine whether baseline plasma pTau217 (ALZpath assay on Quanterix platform) modified QDRS or Preclinical Alzheimer's Cognitive Composite (PACC3) trajectories (mixed-effects models; time = age).

View Article and Find Full Text PDF