Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Structured illumination microscopy (SIM) as a type of super-resolution optical microscopy technique has been widely used in the fields of biophysics, neuroscience, and cell biology research. However, this technique often requires high-intensity illumination and multiple image acquisitions to generate a single high-resolution image. This process not only significantly reduces the imaging speed, but also increases the exposure time of samples to intense light, leading to increased phototoxicity and photobleaching issues, especially prominent in live cell imaging. Here, we propose a lightweight Multi-Convolutional UNet (MCU-Net) aiming to maintain efficient super-resolution reconstruction performance by reducing the model parameter quantity. The algorithm integrates multiple convolutional techniques with multi-scale attention mechanisms, enhancing the model's sensitivity to information at different scales and improving its precise recognition ability for image textures and structures, thus enabling high-quality super-resolution reconstruction even under low-light conditions. The overall performance of the model is evaluated in terms of efficiency and accuracy, comparing MCU-Net with deep neural network models (UNet, ScUNet, EDSR, DFCAN) and traditional reconstruction algorithms (Wiener, HiFi, TV) across different cell types, lighting intensities, and various test sets. Experimental results show that compared to other deep learning models, MCU-Net achieves a 12.66% improvement in MS-SSIM and a 50.79% increase in NRMSE index. Its prediction accuracy remains stable even in the presence of low signal-to-noise ratio inputs. Furthermore, it strikes an optimal balance between reconstruction speed and model accuracy, with a 76.10% improvement in inference speed compared to the DFCAN model.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jmi.70009DOI Listing

Publication Analysis

Top Keywords

structured illumination
8
illumination microscopy
8
super-resolution reconstruction
8
reconstruction
5
reconstruction structured
4
microscopy live
4
live imaging
4
imaging low
4
low light
4
light lightweight
4

Similar Publications

Objective: This study investigated the locations of amino acid modifications within two major human hair keratins (Type I K31 and Type II K85) with probable implications for protein and hair structural component integrity. The particular focus was on cysteine modifications that disrupt intra-protein and inter-protein disulphide bonds.

Methods: Human hair was exposed to accelerated, sequential heat or UV treatments, simulating effects resulting from the use of heated styling tools and environmental exposure over a time frame approximating one year.

View Article and Find Full Text PDF

Reconstructing bone defects remains a significant challenge in clinical practice, driving the urgent need for advanced artificial grafts that simultaneously promote vascularization and osteogenesis. Addressing the critical trade-off between achieving high porosity/strength and effective bioactivity at safe ion doses, we incorporated strontium (Sr) into β-tricalcium phosphate (β-TCP) scaffolds with a triply periodic minimal surface (TPMS) structure using digital light processing (DLP)-based three-dimensional (3D) printing. Systematically screening Sr concentrations (0-10 mol%), we identified 10 mol% as optimal, leveraging the synergy between the biomimetic TPMS architecture, providing exceptional mechanical strength (up to 1.

View Article and Find Full Text PDF

Unravelling the molecular network structure of biohybrid hydrogels.

Mater Today Bio

October 2025

Leibniz Institute of Polymer Research Dresden, Division Polymer Biomaterials Science, Max Bergmann Center of Biomaterials Dresden, 01069, Dresden, Germany.

Glycosaminoglycan-based biohybrid hydrogels represent a powerful class of cell-instructive materials with proven potential in tissue engineering and regenerative medicine. Their biomedical functionality relies on a nanoscale polymer network that standard microscopy techniques cannot resolve. Here, we introduce an advanced analytical approach that integrates transmission electron microscopy, X-ray scattering, and computer simulations to directly and quantitatively characterize the nanoscale molecular network structure of these hydrogels.

View Article and Find Full Text PDF

Waterborne viruses have caused outbreaks of related diseases and threaten human health, and advanced oxidation processes (AOPs), as clean and efficient technologies, have received widespread attention for their excellent performance in inactivating viruses. However, heterogeneity in susceptibility of structurally distinct viruses to various reactive oxygen species (ROS) is unclear. This study first measured the heterogeneity in inactivation kinetics and biological mechanisms of four typical viral surrogates (MS2, phi6, phix174, and T4) to various ROS by visible light catalysis.

View Article and Find Full Text PDF

High-Pressure X‑ray Diffraction Study of Scheelite-Type Perrhenates.

J Phys Chem C Nanomater Interfaces

September 2025

Departamento de Física Aplicada - Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr Moliner 50, 46100 Burjassot, Valencia Spain.

The effects of pressure on the crystal structure of scheelite-type perrhenates were studied using synchrotron powder X-ray diffraction and density-functional theory. At ambient conditions, the studied materials AgReO, KReO, and RbReO, exhibit a tetragonal scheelite-type crystal structure described by space group 4/. Under compression, a transition from scheelite-to-M'-fergusonite (space group 2/) was observed at 1.

View Article and Find Full Text PDF