98%
921
2 minutes
20
Embryonal tumors with multilayered rosettes (ETMR) are rare, highly aggressive brain neoplasms predominantly affecting children under 3 years of age. In the 2021 WHO Classification of Tumors of the Central Nervous System, ETMRs are classified as grade IV tumors, previously considered separate entities such as embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma (EBL). We report a 13-month-old girl who presented with afebrile seizures, left hemiparesis, and status epilepticus. Neuroimaging revealed a right fronto-parieto-temporal mass with typical features of ETMR, confirmed by stereotactic biopsy. Despite supportive care and preparation for surgery, the patient's condition deteriorated rapidly, and she passed away 15 days after admission. This case highlights the typical presentation, imaging characteristics, and poor prognosis of ETMR, emphasizing the importance of early recognition and molecular testing in enhancing diagnosis and treatment strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365765 | PMC |
http://dx.doi.org/10.1016/j.radcr.2025.06.042 | DOI Listing |
Neurosurg Rev
September 2025
Department of Neurosurgery, University Hospital of Ioannina, Ioannina, Greece.
Background: The aim of this review is to present the role of intraoperative flow cytometry (IFC) in the intracranial tumor surgery. This scoping review aims to summarize current evidence on the intraoperative use of IFC in patients with intracranial tumors.
Methods: A comprehensive literature search was conducted in the Medline, Cochrane and Scopus databases up to January 21, 2025.
Urologie
September 2025
Klinik für Urologie, Medizinisches Forschungszentrum, Urologisches Forschungslabor, Translationale UroOnkologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland.
Type II testicular germ cell tumors (GCT) are the most common malignant disease in young men, with a steadily increasing incidence. They originate from germ cell neoplasia in situ and are classified into seminomas (SE) and nonseminomas (NS). The NS subtype embryonal carcinoma (EC) exhibits stem cell-like characteristics and, thus, has the potential to differentiate into teratomas (TE) or extraembryonic tissues, such as yolk-sac tumors (YST) and choriocarcinomas (CC).
View Article and Find Full Text PDFJ Korean Med Sci
September 2025
Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, Korea.
Background: With the increasing incidence of skin cancer, the workload for pathologists has surged. The diagnosis of skin samples, especially for complex lesions such as malignant melanomas and melanocytic lesions, has shown higher diagnostic variability compared to other organ samples. Consequently, artificial intelligence (AI)-based diagnostic assistance programs are increasingly needed to support dermatopathologists in achieving more consistent diagnoses.
View Article and Find Full Text PDFJCI Insight
September 2025
The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children; Toronto, Canada.
More than a third of patients with glioblastoma experience tumor progression during adjuvant therapy. In this study, we performed a high-throughput drug repurposing screen of FDA-approved agents capable of crossing the blood-brain barrier in order to find agents to counteract acquired or inherent glioma cell resistance to temozolomide-associated cytotoxicity. We identified the cholesterol processing inhibitor, lomitapide, as a potential chemosensitizer in glioblastoma.
View Article and Find Full Text PDFBrain Behav
September 2025
Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing, People's Republic of China.
Background: The gut microbiota plays a crucial role in the development of glioma. With the evolution of artificial intelligence technology, applying AI to analyze the vast amount of data from the gut microbiome indicates the potential that artificial intelligence and computational biology hold in transforming medical diagnostics and personalized medicine.
Methods: We conducted metagenomic sequencing on stool samples from 42 patients diagnosed with glioma after operation and 30 non-intracranial tumor patients and developed a Gradient Boosting Machine (GBM) machine learning model to predict the glioma patients based on the gut microbiome data.