98%
921
2 minutes
20
Background: Poikiloderma, hereditary fibrosing, with tendon contractures, myopathy, and pulmonary fibrosis (POIKTMP) is a rare genetic multisystemic fibrosing disorder caused by FAM111B gene mutations. Given its rarity, the molecular underpinnings of POIKTMP remain elusive. FAM111B, a trypsin-like serine protease, initially studied in cancer, exhibits germline variants not consistently linked to tumours, suggesting broader functions beyond cell proliferation.
Methods: In this study, we compiled and compared the clinical features of 41 POIKTMP patients, which included the description of 4 newly identified cases. Functional studies involved the exploration of patient-derived cells carrying FAM111B missense variants using omics technologies.
Findings: Our results show that the phenotypic spectrum of POIKTMP encompassed renal failure, dental anomalies, hypoparathyroidism, and potentially neuropathy. Notably, variants clustering within the D-box domain of FAM111B protein tend to present a more severe phenotype. Most importantly, loss of FAM111B expression perturbed ubiquitin-proteasome system (UPS) function, leading to increased content of ubiquitin-protein conjugates and a sterile type I interferon signature.
Interpretation: These findings highlight a dysfunctional UPS as a potential central driver of POIKTMP's molecular pathogenesis, presenting promising therapeutic avenues.
Funding: Association Française contre les Myopathies (AFM - 20760), Fondation Génavie (657298), Fondation Thellie, I-SITE NExT Junior Talent, Biogenouest, Infrastructures en Biologie Santé et Agronomie (IBiSA) and Conseil Régional de Bretagne.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396287 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2025.105864 | DOI Listing |
Eur J Pharmacol
September 2025
Departamento de Química and Institute for advanced research in chemical Science (IAdChem), Facultad de Ciencias, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
The Skp2-Cks1 protein-protein interaction (PPI) within the SCF ubiquitin ligase acts as a co-receptor for phosphorylated CDK inhibitors-most prominently p27-relieving CDK inhibition and advancing the cell cycle, a dependency accentuated in RB-pathway-defective cancers. Crystallographic and cryo-EM analyses delineate a composite pocket formed by the Skp2 leucine-rich-repeat groove and the phosphate-recognition site of Cks1; Cks1-centered open-closed motions further influence druggability. Using HTRF/TR-FRET and AlphaScreen biochemistry, alongside cell-based target-engagement readouts in some studies, three small-molecule classes have emerged that disrupt this PPI: 1,3-diphenyl-pyrazines and triazolo[1,5-a]pyrimidines (lead E35) with low-micromolar potency, and "Skp2E3LI" compounds with micromolar cellular activity.
View Article and Find Full Text PDFArch Pharm Res
September 2025
College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea.
c-Jun N-terminal kinases (JNKs), a subfamily of mitogen-activated protein kinases (MAPKs), are key mediators of cellular responses to environmental stress, inflammation, and apoptotic signals. The three isoforms-JNK1, JNK2, and JNK3 exhibit both overlapping and isoform-specific functions. While JNK1 and JNK2 are broadly expressed across tissues and regulate immune signaling, cell proliferation, and apoptosis, JNK3 expression is largely restricted to the brain, heart, and testis, where it plays a crucial role in neuronal function and survival.
View Article and Find Full Text PDFAnticancer Drugs
September 2025
Department of Blood and Marrow Transplantation, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer.
Bortezomib resistance in multiple myeloma (MM) is a significant clinical challenge that limits the long-term effectiveness. Currently, there is a lack of reliable biomarkers to predict bortezomib resistance. Previous studies reported that several proteins regulate bortezomib resistance through targeting ubiquitin-proteasome pathways, including heat shock protein family A member 9 (HSPA9), dickkopf Wnt signaling pathway inhibitor 1 (DKK1), proteasome 26S subunit non-ATPase 14 (PSMD14), and tripartite motif containing 21 (TRIM21).
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Marine College, Shandong University, Weihai, Shandong 264209, China. Electronic address:
Tralopyril (TP), a representative bromopyrrolonitrile, functions as a broad-spectrum insecticide, raising growing concerns about its potential impact on aquatic organisms and human intestinal health. However, the key targets and toxicity mechanisms underlying TP-induced enteritis remain unclear. In this study, we utilized network toxicology combined with molecular docking to comprehensively explore the potential molecular mechanisms underlying TP-induced enteritis.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, China. Electronic address:
The 20S proteasome is a core component of the ubiquitin-proteasome system, participating in various biological processes such as cell cycle regulation, signal transduction, apoptosis, and protein homeostasis. However, its roles in mammals are well-documented, its function in the insect intestine remains largely unexplored. In this study, we identified 14 20S proteasome subunits, including 7 α-subunits and 7 β-subunits in Locusta migratoria, a worldwide agricultural pest.
View Article and Find Full Text PDF