Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The differential diagnosis between hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) is crucial. The individual differences of patients increase the complexity of diagnosis. Currently, imaging diagnosis mainly relies on conventional computed tomography and magnetic resonance imaging (MRI), but few studies have investigated MRI functional imaging. This study combined MRI functional imaging including intravoxel incoherent motion (IVIM) and diffusion kurtosis imaging (DKI), facilitating differential diagnosis.

Aim: To explore the differential diagnostic value of IVIM imaging and DKI in differentiating between HCC and ICC.

Methods: A total of 58 patients who underwent multi-b-value diffusion weighted imaging (DWI) on a 3.0 T magnetic MRI scanner were enrolled in this study. Standard apparent diffusion coefficient (SADC), IVIM quantitative parameters, including pure diffusion coefficient (D), pseudo diffusion coefficient (Dstar), and perfusion fraction (f), as well as the DKI quantitative parameters mean diffusion coefficient (MD) and mean kurtosis coefficient (MK) were computed by multi-b DWI images. The test was used for classified data, and a one-way analysis of variance was performed for counted data. < 0.05 indicated statistical significance. The diagnostic value of parameters in HCC and ICC was analyzed using the receiver operating characteristic (ROC) curve.

Results: The SADC, D, and MD values were significantly lower in the HCC group compared to the ICC group, whereas MK was significantly higher in the HCC group than in the ICC group ( < 0.05). No significant difference in Dstar and f was observed between the HCC group and the ICC group ( > 0.05). The optimal cutoff levels of the total values of SADC, D, MK, MD and all associated parameters were 1.25 × 10 mm²/second, 1.32 × 10 mm²/second, 650.2 × 10 mm²/second, 1.41 × 10 mm²/second and 0.46 × 10 mm²/second, respectively. The sensitivity of diagnosis was 95%, 80%, 90%, 100%, and 70%, respectively, the specificity of diagnosis was 67.39%, 69.57%, 67.39%, 43.48%, and 93.48%, respectively, and the area under the ROC curve was 0.874, 0.793, 0.733, 0.757, and 0.895, respectively.

Conclusion: SADC, D, MK, and MD could be used to distinguish HCC from ICC, with the diagnostic value reaching a maximum after establishing a joint model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362510PMC
http://dx.doi.org/10.4251/wjgo.v17.i8.108679DOI Listing

Publication Analysis

Top Keywords

diffusion coefficient
16
hcc group
12
icc group
12
intravoxel incoherent
8
incoherent motion
8
diffusion kurtosis
8
imaging
8
kurtosis imaging
8
hepatocellular carcinoma
8
intrahepatic cholangiocarcinoma
8

Similar Publications

Diffusive and advective flux measurements of trichloroethene from soil into a building: a case study.

Chemosphere

September 2025

UMR Epoc 5805, Bordeaux-INP. 1 Allée Daguin, 33607, Pessac cedex, France. Electronic address:

In order to validate some assumptions and calculations of Johnson and Ettinger's model, a mapping of measured VOC fluxes in a heavily contaminated building was undertaken. To this end, both advective and diffusive flux measurements were carried out under real conditions. Diffusive fluxes were measured with flux chambers recording the initial concentration rise during the first minutes.

View Article and Find Full Text PDF

Prognostic value of multiparameter [Ga]Ga-DOTA-FAPI-04 PET/MR imaging biomarkers for patients with advanced pancreatic cancer.

Eur J Nucl Med Mol Imaging

September 2025

Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yang Pu District, Shanghai, 200433, China.

Purpose: In this retrospective study, whether [Ga]Ga-DOTA-FAPI-04 PET/MR imaging biomarkers can predict the progression-free survival (PFS) and overall survival (OS) of patients with advanced pancreatic cancer was investigated.

Methods: Fifty-one patients who underwent [Ga]Ga-DOTA-FAPI-04 PET/MR scans before first-line chemotherapy were recruited. Imaging biomarkers, including the maximum tumor diameter, minimum apparent diffusion coefficient (ADC), maximum and mean standardized uptake values (SUV and SUV), fibroblast activation protein- (FAP-) positive tumor volume (FTV and W-FTV) and total lesion FAP expression (TLF and W-TLF), were recorded for primary and whole-body tumors.

View Article and Find Full Text PDF

Ionic conductivity mechanisms in PEO-NaPF electrolytes.

Nanoscale

September 2025

Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342030, India.

Understanding ion transport mechanisms in sodium ion-based polymer electrolytes is critical, considering the emergence of sodium ion electrolyte technologies as sustainable alternatives to lithium-based systems. In this paper, we employ all-atom molecular dynamics simulations to investigate the salt concentration () effects on ionic conductivity () mechanisms in sodium hexafluorophosphate (NaPF) in polyethylene oxide (PEO) electrolytes. Sodium ions exhibit ion solvation shell characteristics comparable to those of lithium-based polymer electrolytes, with similar anion coordination but more populated oxygen coordination in the polymer matrix.

View Article and Find Full Text PDF

Hydrogen energy is pivotal for driving sustainable development and achieving deep decarbonization; yet, its storage remains a significant challenge. Notably, depleted methane reservoirs can serve as a promising large-scale solution for underground hydrogen storage (UHS). Based on adsorption experiments, Monte Carlo and molecular dynamics methods, the adsorption behavior of H and CH in anthracite and the applicability of five models were discussed.

View Article and Find Full Text PDF

Heterogeneous response and non-Markovianity in the microrheology of semisolid viscoelastic materials.

J Phys Condens Matter

September 2025

Department of Physics, Universidade Federal de Vicosa, Av. P. H. Rolds, s/n, Vicosa, Vicosa, 36570-000, BRAZIL.

Recent works indicate that heterogeneous response and non-Markovianity may yield recognizable hallmarks in the microrheology of semisolid viscoelastic materials. Here we perform numerical simulations using a non-Markovian overdamped Langevin approach to explore how the microrheology experienced by probe particles immersed in an effective semisolid material can be influenced by its micro-heterogeneities. Our results show that, besides affecting the mean squared displacement, the time-dependent diffusion coefficient, and the shear moduli, the micro-heterogeneities lead to displacement distributions that deviate from the usual Gaussian behavior.

View Article and Find Full Text PDF