98%
921
2 minutes
20
The NF-κB signaling pathway plays a crucial role in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, particularly through its role in the regulation neuroinflammation, oxidative stress, protein misfolding, and apoptosis. Emerging evidence suggests that acupuncture modulates the NF-κB pathway, thus offering therapeutic potential by mitigating neuroinflammation, reducing oxidative stress, and protecting mitochondrial function. Specifically, acupuncture inhibits NF-κB activation, downregulates pro-inflammatory mediators like TNF-α and IL-6, and mitigates neurotoxicity and apoptosis. These effects are substantiated in animal models of Alzheimer's and Parkinson's diseases, with preliminary evidence in amyotrophic lateral sclerosis models. However, current studies largely rely on preclinical models with limited acupoint selection, short observation periods, and a lack of standardized protocols, posing challenges for translation to clinical settings. Future research should prioritize well-designed clinical trials, expand acupoint combinations, and explore synergistic effects with conventional therapies, aiming to maximize acupuncture's therapeutic efficacy in neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2025.149893 | DOI Listing |
Biochim Biophys Acta Mol Cell Res
September 2025
Department of Physiology and Pathophysiology, University of Manitoba, Health Sciences Centre, Winnipeg, Canada. Electronic address:
Ferroptosis is a recently discovered lytic form of cell death that is triggered by iron-driven excessive lipid peroxidation and depletion of glutathione and glutathione peroxidase-4 (GPX4). This form of cell death has been linked to a wide range of conditions from cancer to neurodegenerative diseases. Using murine hippocampal HT22 neurons, we aimed to investigate the underlying mechanisms of glutamate-mediated ferroptosis.
View Article and Find Full Text PDFEur J Pharm Biopharm
September 2025
Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland; Individualized Drug Therapy Research Program, University of Helsinki, Finland; Wihuri Research Institute, Helsinki, Finland; Helsinki One Health, Helsinki, Finland. Electronic address:
Vascular Endothelial Growth Factor C (VEGFC) is a promising biological drug, with preclinical studies indicating its potential for treating myocardial infarction, neurodegenerative diseases, and lymphedema, a condition that currently lacks curative treatment. While adenoviral VEGFC gene therapy has progressed to phase II studies, its clinical efficacy is limited by rapid immune inactivation. This study explores lignin nanoparticles (LNPs) as an alternative VEGFC delivery system.
View Article and Find Full Text PDFBehav Brain Res
September 2025
Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China. Electronic address:
Glutamate-mediated excitotoxicity represents a common pathomechanism in neurological disorders. As the predominant glutamate transporter in the central nervous system, glutamate transporter 1 (GLT-1, known as EAAT2 in humans) plays a crucial role in maintaining glutamate homeostasis and preventing excitotoxicity through its Na⁺-dependent transport mechanism. Key functions of GLT-1 include reducing extracellular glutamate concentration, regulating calcium homeostasis, suppressing oxidative stress, preserving mitochondrial integrity, and modulating neuroinflammatory processes by limiting microglial activation.
View Article and Find Full Text PDFEur J Med Chem
August 2025
Amity Institute of Pharmacy, Amity University Haryana, 122413, India. Electronic address:
Neurodegenerative diseases (NDs), including Alzheimer's, Huntington's, and Parkinson's disease, are associated with significant declines in cognitive function and mobility. The accumulation of misfolded proteins such as β-amyloid, tau, α-synuclein, and polyglutamates is a key factor in the progression of these conditions. Unfortunately, traditional small-molecule drugs face major obstacles in effectively targeting these proteins.
View Article and Find Full Text PDFAdv Biol Regul
September 2025
Laboratory of Cancer Cell Architecture, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic. Electronic address:
Biomolecular condensates (BMCs) are membrane-less organelles formed through liquid-liquid phase separation, primarily driven by multivalent interactions between scaffold and client molecules. These dynamic compartments enable cells to spatially and temporally organize biochemical reactions by locally concentrating specific biomolecules, thereby enhancing the frequency of productive molecular interactions and increasing reaction rates. BMCs are integral to normal cellular physiology, with well-characterized examples including the nucleolus and Cajal bodies.
View Article and Find Full Text PDF