98%
921
2 minutes
20
Biosurfactants, amphiphilic secondary metabolites mainly produced by microorganisms, can be categorized into five groups according to their chemical structure and source: glycolipids, lipopeptides, phospholipids, polymeric biosurfactants, and particulate surfactants. The hydrophobic segments of biosurfactants typically contain fatty acids of varying chain lengths, while their hydrophilic portions display a wide range of diversity. Diverse biosurfactants have distinct metabolic pathways. Glycolipids are usually associated with glycolysis/gluconeogenesis and fatty acid metabolism, while lipopeptides are closely connected to non-ribosomal peptide synthetase. Particulate biosurfactants are formed through the anabolic pathway of phospholipids, with amino acid metabolism and carbohydrate metabolism being crucial components in the process of creating polar head groups. Metal ions are critical for either directly influencing strain growth or governing genes connected to biosurfactants production. This review explores the synthesis pathways of various biosurfactants and examines the influence of different metal ions on their production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12375547 | PMC |
http://dx.doi.org/10.4014/jmb.2503.03031 | DOI Listing |
Analyst
September 2025
Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.
Copper ions are essential elements in the human body and participate in various physiological activities in the bodies of organisms. Herein, an ultrasensitive electrochemical biosensor was developed for detection of copper ions (Cu) based on FeO@Au magnetic nanoparticles (FeO@Au MNPs) and a Cu-dependent DNAzyme assisted nicking endonuclease signal amplification (NESA) strategy. dsDNA is formed by a hybridization reaction between DNA S2 and S1 immobilized on the surface of FeO@Au MNPs.
View Article and Find Full Text PDFAnalyst
September 2025
School of Information Science and Technology, Fudan University, 220 Handan Rd, Shanghai 200433, China.
Mercury(II) ions (Hg) are one of the most common and highly toxic heavy metal ions, which can contaminate the environment and damage the human health. Therefore, the precise detection of trace Hg concentration is particularly important. Herein, gold nanoparticles-enhanced silver-coated hollow fiber (HF) surface plasmon resonance (SPR) sensor was developed for the highly sensitive detection of Hg ions.
View Article and Find Full Text PDFWater Res
August 2025
School of Materials and Energy, University of Electronic Science and Technology of China, 610054 Chengdu, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu, China. Electronic address:
The scalable fabrication of high performance dyes desalination loose nanofiltration (LNF) membrane through facile thermal annealing remains challenging due to the susceptible pore collapse. Herein, we have developed a metal ion mediated sub-Tg thermal crosslinking protocol, which can convert the phase inverted reactive polymeric ultrafiltration substrate into LNF membrane showing high permselectivity as well as resistance to both extremely acid and alkaline solution. The original ultrafiltration substrate was composed of scalable-produced reactive polyarylene ether amidoxime (PEA) that was pre-crosslinked with ferric ions.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China; Institute of Ecological Environmental Protection and Pollution Remediation Engineering, Anhui Agricultural U
Neonicotinoid insecticides residuals pose a threat to aquatic ecosystems and human health. Imidaclothiz, as a novel neonicotinoid pesticide, the metabolic mechanisms in aquatic environments was unclear. This study investigated the degradation characteristics of imidaclothiz in both pure and actual water, and analyzed the photodegradation and hydrolysis metabolites of imidaclothiz in aquatic environments and assessed their toxicity.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Department of Physics, University of Lucknow, Lucknow, India; Department of Physics and Astrophysics, University of Delhi, India. Electronic address:
Background: Water contamination is a global challenge, primarily due to heavy metal ions like lead (Pb), iron (Fe), cadmium (Cd), andmercury (Hg) as well as dyes. These pollutants enter the ecosystem from industrial waste and runoff, accumulate in the environment and pose a high risk to humans, animals and plants. Various sensors, such as colorimetric sensors, and electrochemical sensors have been developed to detect these ions and dyes.
View Article and Find Full Text PDF