Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Postoperative cognitive dysfunction (POCD) is a common and significant neurological complication, occurring more frequently in elderly individuals and those with frailty or underlying neurodegenerative conditions, though it is not limited to these populations. The glymphatic system-a brain-wide clearance network dependent on aquaporin-4 (AQP4) polarity, arterial pulsation, and sleep-driven cerebrospinal fluid (CSF)-interstitial fluid exchange-has recently emerged as a promising target for cognitive protection. Dexmedetomidine (Dex), a selective α2-adrenergic receptor agonist, facilitates glymphatic function by mimicking non-REM sleep patterns and reducing central norepinephrine tone. Preclinical studies suggest Dex enhances glymphatic clearance by promoting CSF flow, restoring AQP4 localization, and attenuating neuroinflammation, potentially reducing POCD risk. Additionally, Dex provides neuroprotection by inhibiting neuronal apoptosis and preserving blood-brain barrier integrity. Despite promising evidence, most current data are derived from animal studies, and direct clinical validation remains limited. Key challenges include inadequate clinical tools for assessing glymphatic function and the absence of standardized protocols regarding Dex dosage, timing, and patient selection. This review provides a comprehensive summary of how Dex modulates glymphatic system function, with a particular focus on its potential to prevent POCD through mechanisms such as promoting CSF flow, restoring AQP4 polarity, and attenuating neuroinflammation. It also highlights current research gaps, including the lack of direct clinical evidence, the limited availability of reliable methods to assess glymphatic function, and the absence of standardized Dex administration protocols. The review emphasizes the need for future studies to incorporate multimodal imaging, integrated mechanistic analysis, and identification of high-risk patient subgroups, in order to facilitate the clinical translation of Dex as a glymphatic-targeted neuroprotective agent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12354508PMC
http://dx.doi.org/10.3389/fphar.2025.1648308DOI Listing

Publication Analysis

Top Keywords

glymphatic function
12
glymphatic system
8
postoperative cognitive
8
cognitive dysfunction
8
aqp4 polarity
8
promoting csf
8
csf flow
8
flow restoring
8
restoring aqp4
8
attenuating neuroinflammation
8

Similar Publications

Introduction: Dysfunction of the glymphatic system is thought to lead to build up of toxic proteins including β-amyloid and α-synuclein, and thus may be involved in dementia with Lewy bodies (DLB) and Alzheimer's disease (AD). The Diffusion Tensor Image Analysis Along the Perivascular Space (DTI-ALPS) index has been proposed as a marker of glymphatic function.

Aims: To investigate DTI-ALPS in mild cognitive impairment (MCI) and dementia, and determine its relationship with cognitive decline, and biomarkers of neurodegeneration.

View Article and Find Full Text PDF

The therapeutic effects of vortioxetine on mood and cognition have been documented in major depressive disorder (MDD). This study aims to examine whether vortioxetine can improve brain glymphatic system function and connections among functional brain networks and to explore the underlying relationships among these changes. A total of 34 patients with MDD and 41 healthy controls (HCs) were recruited in the study.

View Article and Find Full Text PDF

Background: Blood pressure (BP) is not steady. It varies over intervals from months to consecutive cardiac cycles and this variation contains meaningful information beyond mean BP. Variability over multiple clinic visits (VVV-BP) and during 24-hour ambulatory monitoring (ABPV) is positively related to risk of stroke and coronary artery disease and negatively associated with cognitive performance.

View Article and Find Full Text PDF

Sleep disorders encompass a range of diseases and symptoms that disrupt individual sleep patterns, degrade sleep quality, and diminish sleep efficiency. Currently, the mechanisms governing sleep regulation and the etiology of sleep disorders remain unclear, leading to clinical treatments that are primarily symptomatic due to the absence of precise intervention methods. Recent studies suggest that glymphatic-meningeal lymphatic route is responsible for the clearance of macromolecular metabolites from the brain, thus playing a pivotal role in maintaining sleep homeostasis and circadian rhythm.

View Article and Find Full Text PDF