Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Due to the lack of effective treatment methods and targeted drugs, triple-negative breast cancer (TNBC) is not only difficult to treat clinically, but also has a poor prognosis for patients. This study aims to develop novel anti-TNBC drug candidates by designing 90 derivatives of 3,4--lupane triterpene derivatives, a natural product of the genus Eleutherogenus.

Methods: Firstly, 90 derivatives were synthesized and screened, and the compound I-27 showed excellent cytotoxicity (IC=1.02 μM) for MDA-MB-231 cells for further activity verification. Then in vitro tests were carried out to detect the effects of the compound on the proliferation, migration, invasion and apoptosis of TNBC cells. With the help of transcriptomics, the mechanism of action was explored and verified. At the same time, its inhibitory effect on tumor volume and lung metastasis was verified through a mouse model of in vivo test, and its mechanism of action was further verified.

Results: In vitro tests showed that compound I.-27 could effectively inhibit the proliferation, migration and invasion of TNBC cells, and induce apoptosis. Transcriptomic analysis revealed that it has a dual mechanism of action. On the one hand, it inhibits tumor angiogenesis through the ID1/TSP-1 pathway. On the other hand, it promotes apoptosis through the PI3K/AKT/FoxO1 signaling pathway. In vivo tests, the compound significantly reduced tumor volume and inhibited lung metastasis through mouse models. It further confirmed that ID1 is a key target for anti-tumor.

Conclusions: In this study, an anti-TNBC drug with multiple mechanisms was developed from the triterpenoids of 3,4-3,4--lupane triterpene derivatives for the first time, and the mechanism of action was clarified by combining transcriptomics, molecular docking and gene knockout technologies. Compound I-27 provides a potential breakthrough for the treatment of triple-negative breast cancer as a potential therapeutic candidate with a novel action mechanism and high potency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12351286PMC
http://dx.doi.org/10.3389/fchem.2025.1630939DOI Listing

Publication Analysis

Top Keywords

mechanism action
16
triterpene derivatives
12
triple-negative breast
12
breast cancer
12
compound i-27
12
34--lupane triterpene
8
tumor angiogenesis
8
anti-tnbc drug
8
vitro tests
8
proliferation migration
8

Similar Publications

Background: Intensive language-action therapy treats language deficits and depressive symptoms in chronic poststroke aphasia, yet the underlying neural mechanisms remain underexplored. Long-range temporal correlations (LRTCs) in blood oxygenation level-dependent signals indicate persistence in brain activity patterns and may relate to learning and levels of depression. This observational study investigates blood oxygenation level-dependent LRTC changes alongside therapy-induced language and mood improvements in perisylvian and domain-general brain areas.

View Article and Find Full Text PDF

Antibacterial and antiviral properties of punicalagin (Review).

Med Int (Lond)

August 2025

Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China.

Punicalagin, a polyphenolic compound extracted from pomegranate peel, has received increasing attention in recent years due to its antibacterial and antiviral properties. Punicalagin is capable of inhibiting bacterial growth at sub-inhibitory concentrations by affecting cell membrane formation, disrupting membrane integrity, altering cell permeability, affecting efflux pumps, interfering with quorum sensing and influencing virulence factors. Additionally, punicalagin inhibits viruses by modulating enzyme activity, interacting with viral surface proteins, affecting gene expression, blocking viral attachment, disrupting virus receptor interaction and inhibiting viral replication.

View Article and Find Full Text PDF

Radiation exposure initiates a cascade of reactions, including the release of reactive oxygen species, DNA double-strand breaks, and cellular apoptosis, leading to cell death, tissue damage, and potentially the development of cancer. Consequently, there is an urgent need to develop highly effective and low-toxicity radioprotective agents. Traditional chemically synthesized protective agents face significant limitations in clinical applicability due to their pronounced off-target toxicity, narrow therapeutic window, and high production costs.

View Article and Find Full Text PDF

Evaluating Tuskegee University's Ongoing Response Strategy to Mitigate Direct and Indirect Impacts of the COVID-19 Pandemic by Using an Integrative Framework Analysis.

J Healthc Sci Humanit

January 2024

Program Manager, Center for Biomedical Research/Research Centers in Minority Institutions (TU CBR/RCMI), Department of Biology, College of Arts and Sciences (CAS), Tuskegee University, Phone: (334) 724-4391, Email:

The emergence of the Novel COVID-19 Pandemic has undoubtedly impacted the lives of individuals across the globe. It has drawn the attention of major public health agencies as they work intensely towards understanding the behavior of the virus causing the disease, while simultaneously establishing ways to curb the spread of the virus among populations. As of the time of writing, 7,949,973 confirmed cases have been reported globally; with the United States (US) contributing to 26.

View Article and Find Full Text PDF

Diabetic wounds present persistent challenges due to impaired healing, recurrent infection, oxidative stress, and dysregulated glucose metabolism. Bioinspired polymeric microneedle (MN) patches have emerged as multifunctional platforms capable of penetrating the stratum corneum to deliver therapeutics directly into the dermis, enabling glucose regulation, antimicrobial action, reactive oxygen species (ROS) modulation, and proangiogenic stimulation. Recent experimental evidence has demonstrated that the integration of glucose oxidase-loaded porous metal-organic frameworks, photothermal nanomaterials, and antioxidant hydrogels within dissolvable MNs achieves synergistic bactericidal effects, accelerates collagen deposition, and enhances neovascularization in diabetic wound models.

View Article and Find Full Text PDF