Lignin-derived self-assembled 2D N-doped carbon nanosheets as effective oxygen-redox electrocatalysts for rechargeable zinc-air batteries.

Int J Biol Macromol

Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Two-dimensional (2D) carbon nanomaterials are widely used in electrocatalytic reactions due to their enhanced electron mobility and excellent structural stability. Nevertheless, the complexity of its synthesis process limits its large-scale application. In this study, layered porous 2D lignin-derived carbon nanosheets were successfully synthesized using various salts as templates combined with an antisolvent technique. When employed as cathode catalysts for zinc-air batteries (ZABs), the catalysts demonstrated remarkable oxygen reduction reaction (ORR) activity. The catalyst has a half-wave potential (E) of approximately 0.883 V, which is significantly higher than that of Pt/C. And the catalyst exhibits excellent methanol tolerance and long-term operational stability. Moreover, the investigation revealed that the rechargeable ZABs assembled with the electrocatalyst achieved a peak power density of up to 151 mW·cm and specific capacities of 821.5 mAh·g. This study develops a novel approach to synthesize 2D carbon nanosheets integrating cost-effectiveness, environmentally benign and facile processing, and high catalytic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.146669DOI Listing

Publication Analysis

Top Keywords

carbon nanosheets
12
zinc-air batteries
8
lignin-derived self-assembled
4
self-assembled n-doped
4
carbon
4
n-doped carbon
4
nanosheets effective
4
effective oxygen-redox
4
oxygen-redox electrocatalysts
4
electrocatalysts rechargeable
4

Similar Publications

Unveiling Ion-Transport Dynamics in 2D Nanofluidic Anion-Selective Membranes toward Osmotic Energy Harvesting.

Nano Lett

September 2025

State Key Laboratory of Materials Low-Carbon Recycling, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, P. R. China.

Two-dimensional (2D) nanofluidic architectures with nanoconfined interlayer channels and excess surface charges have revolutionized membrane-based reverse electrodialysis systems, demonstrating highly efficient osmotic energy collection through strong electrostatic screening of electric double layer (EDL). However, the ion-transport dynamics in 2D nanofluidic anion-selective membranes (2D-NAMs) still remain unexplored. Here, we combine density functional theory and molecular dynamics (MD) simulations to systematically explore ion transport in the 2D-NAMs.

View Article and Find Full Text PDF

Electrolyte-Driven Cu Substitution in MoSe: Synergy of an Inorganic-Rich Solid Electrolyte Interphase and Thermal Activation for Sodium-Ion Batteries.

ACS Nano

September 2025

Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.

Transition metal chalcogenides (TMCs) have garnered significant attention as high-capacity anode materials, yet the unconventional role of the Cu collector meditating atomic-level substitution of metal-site cations by Cu ions during electrochemical cycling remains mechanistically unclear. To address this, herein, Cu-doped MoSe@C ultrathin nanosheets were synthesized via the solvothermal process and carbonization strategies. A systematic investigation was conducted to elucidate the underlying driving forces for Cu substitution at Mo sites and the crucial regulatory effects of solid electrolyte interphase (SEI) formation.

View Article and Find Full Text PDF

CuCo-Layered Double Hydroxide Nanosheets Grown on Hierarchical Carbonized Wood as Bifunctional Electrode for Supercapacitor and Hydrogen Evolution Reaction.

Adv Sci (Weinh)

September 2025

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.

Carbonized wood has great potential as a self-supported electrode for energy storage/conversion applications. However, developing efficient and economical bifunctional electrodes by customizing the surface structure remains a challenge. This study proposes a novel multifunctional electrode design strategy, using N/P co-doped carbonized wood (NPCW) as carriers and in situ grows copper nanoparticles (Cu NPs) as nucleation centers to induce vertical growth of CuCo-layered double hydroxid (LDH) nanosheets along the substrate.

View Article and Find Full Text PDF

The construction of perfluoropolyether (PFPE) slippery liquid-infused porous surfaces (SLIPS) on gold coatings is one of the most effective strategies for bestowing anticoagulation and antimicrobial properties on the material. However, the poor chemical affinity between fluorinated porous precursors and gold substrates causes the agglomeration of nanostructures, resulting in uneven nanoporous morphology and accelerating lubricant leakage. Simultaneously, the weak interfacial adhesion between the nanostructures and the substrate may lead to the detachment of nanostructures under blood circulation.

View Article and Find Full Text PDF

Copper-Modified Nanocarbon Composites for Enhanced Hydrogen Sulfide Adsorption: Synergistic Effects of Persistent Free Radicals and Cu-Based Oxides.

Langmuir

September 2025

Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China.

In this study, copper-modified nanocarbon composites (OMC) were successfully prepared using two-dimensional carbon nanosheets as the material substrate, the low-temperature hydrothermal method as the main process, and copper nitrate as the modifier. The effects of the modifier dosage ratio, hydrothermal temperature, and residence time on the structure and hydrogen sulfide (HS) adsorption performance of OMC were investigated. The results show that the OMC with persistent free radicals and copper oxides prepared under the conditions of a mass ratio of copper nitrate to two-dimensional carbon nanosheets of 2, a hydrothermal temperature of 130 °C, and a time of 8 h, respectively, has the best adsorption performance for HS, with an adsorption sulfur capacity of up to 46.

View Article and Find Full Text PDF