Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Silver nanoparticles (Ag NPs) significantly enhance the antibacterial activity of antibiotics and even restore their effect against resistant strains, making them a promising option for overcoming bacterial resistance to antibiotics. However, the exact mechanism of their synergistic effect with antibiotics at the cellular level has not been elucidated. In this work, we synthesised rhodamine-labelled Ag NPs and described, for the first time, the multi-level non-specific mechanism of the synergistic antibacterial effect of fluorescently labelled Ag NPs and a fluorescent vancomycin conjugate against vancomycin-resistant enterococci using high-resolution fluorescence microscopy. The multi-level mechanism of the synergistic effect of Ag NPs and vancomycin is mainly based on the disruption of the strength and integrity of the cell wall, which becomes unstable, loses strength and subsequently disintegrates due to the oxidative stress caused by Ag NPs and the residual effect of vancomycin. In addition, Ag NPs penetrate the bacterial cell and deform the bacterial DNA, which also significantly increases the synergistic antibacterial effect. This work represents an advance in understanding the mechanism of synergistic effect of Ag NPs with antibiotics against resistant bacteria, an important finding for a potential approach to effectively combat the unsolved problem of increasing resistance of pathogenic bacteria to traditional antibiotics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5tb01231gDOI Listing

Publication Analysis

Top Keywords

mechanism synergistic
20
synergistic antibacterial
12
silver nanoparticles
8
fluorescence microscopy
8
synergistic nps
8
nps
7
synergistic
6
antibiotics
5
revealing mechanism
4
antibacterial
4

Similar Publications

Indocyanine green (ICG) is a well-established near-infrared dye which has been used clinically for several decades. Recently, it has been utilised for fluorescence-guided surgery in a range of solid cancer types, including sarcoma, with the aim of reducing the positive margin rate. The increased uptake and retention of ICG within tumours, compared with normal tissue, gives surgeons a visual reference to aid resection when viewed through a near-infrared camera.

View Article and Find Full Text PDF

Exploring tumour-microbe interactions: in vitro and in vivo modelling of Streptococcus bovis-induced colorectal carcinogenesis.

Mol Biol Rep

September 2025

Department of Medical Microbiology and Parasitology, Faculty of Medicine, Selangor Branch, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, 47000, Selangor, Malaysia.

Streptococcus bovis is an opportunistic bacterium consistently associated with colorectal cancer (CRC). This article reviews previous experimental evidence that has successfully demonstrated the role of S. bovis species in the context of CRC.

View Article and Find Full Text PDF

Inspired by the rigid exoskeleton and elastic inner tissues of crustaceans, a bilayer gel integrating high-strength rigidity and soft cushioning with high interfacial adhesion (1060 ± 40 J m ) is developed via a stepwise solid-liquid phase crosslinking strategy. Herein, a prefrozen high-concentration polyvinyl alcohol (PVA) solution forms a solid-state structural framework, while a subsequently cast low-concentration PVA solution generates a flexible layer. Partial thawing of the frozen gel during casting triggers molecular chain interpenetration at the interface, synergistically enhanced by controlled molecular penetration, freeze-thaw cycles, and salt-induced crystallization.

View Article and Find Full Text PDF

Polyethylene terephthalate (PET) glycolysis presents an effective solution to address plastic pollution while promoting the utilization of renewable resources. It is highly important to gain in-depth insights into the identification of the well-defined active sites and the structure-activity relationships in PET glycolysis. Herein, PW@UiO-67 with different exposed crystal facets, i.

View Article and Find Full Text PDF

Solvothermal synthesis of PtPb nanoparticles with efficient alcohol oxidation performance.

Nanoscale

September 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

Precious metal nanomaterials have demonstrated significant advantages in the field of alcohol electro-catalytic oxidation. In this study, the inexpensive main group metals lead (Pb) and platinum (Pt) have been innovatively selected to construct an alloy catalyst. By employing the solvent-thermal method, PtPb nanoparticles with a well-defined crystalline structure were successfully synthesized, exhibiting excellent performance.

View Article and Find Full Text PDF