98%
921
2 minutes
20
The rapid integration of complex sensors and electronic control units (ECUs) in autonomous vehicles significantly increases cybersecurity risks in vehicular networks. Although the Controller Area Network (CAN) is efficient, it lacks inherent security mechanisms and is vulnerable to various network attacks. The traditional Intrusion Detection System (IDS) makes it difficult to effectively deal with the dynamics and complexity of emerging threats. To solve these problems, a lightweight vehicular network intrusion detection framework based on Dynamic Feature Fusion Federated Learning (DFF-FL) is proposed. The proposed framework employs a two-stream architecture, including a transformer-augmented autoencoder for abstract feature extraction and a lightweight CNN-LSTM-Attention model for preserving temporal and local patterns. Compared with the traditional theoretical framework of the federated learning, DFF-FL first dynamically fuses the deep feature representation of each node through the transformer attention module to realize the fine-grained cross-node feature interaction in a heterogeneous data environment, thereby eliminating the performance degradation caused by the difference in feature distribution. Secondly, based on the final loss LAEX,X^ index of each node, an adaptive weight adjustment mechanism is used to make the nodes with excellent performance dominate the global model update, which significantly improves robustness against complex attacks. Experimental evaluation on the CAN-Hacking dataset shows that the proposed intrusion detection system achieves more than 99% F1 score with only 1.11 MB of memory and 81,863 trainable parameters, while maintaining low computational overheads and ensuring data privacy, which is very suitable for edge device deployment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12349077 | PMC |
http://dx.doi.org/10.3390/s25154622 | DOI Listing |
This paper presents a novel multiscale signal processing framework for power quality disturbance (PQD) and cyber intrusion detection in smart grids, combining Non-Subsampled Contourlet Transform (NSCT), Split Augmented Lagrangian Shrinkage Algorithm (SALSA), and Morphological Component Analysis (MCA). A key innovation lies in an adaptive weighting mechanism within NSCT's directional sub bands, enabling dynamic energy redistribution and enhanced representation of both low-frequency anomalies (e.g.
View Article and Find Full Text PDFPLoS One
September 2025
School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
Computer networks are highly vulnerable to cybersecurity intrusions. Likewise, software-defined networks (SDN), which enable 5G users to broadcast sensitive data, have become a primary target for vulnerability. To protect the network security against attacks, various security protocols, including authorization, the authentication process, and intrusion detection techniques, are essential.
View Article and Find Full Text PDFActa Neuropsychiatr
September 2025
Goethe-University Frankfurt am Main; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Frankfurt, Germany.
Objective: Cortisol is a well-established biomarker of stress, assessed through salivary or blood samples, which are intrusive and time-consuming. Speech, influenced by physiological stress responses, offers a promising non-invasive, real-time alternative for stress detection. This study examined relationships between speech features, state anger, and salivary cortisol using a validated stress-induction paradigm.
View Article and Find Full Text PDFPLoS One
September 2025
College of Engineering and Technology, American University of the Middle East, Kuwait.
This paper presents a hybrid adaptive approach based on machine learning (ML) for classifying incoming traffic, feature selection and thresholding, aimed at enhancing downgrade attack detection in Wi-Fi Protected Access 3 (WPA3) networks. The fast proliferation of WPA3 is regarded critical for securing modern Wi-Fi systems, which have become integral to 5G and Beyond (5G&B) Radio Access Networks (RAN) architecture. However, the wireless communication channel remains inherently susceptible to downgrade attacks, where adversaries intentionally cause networks to revert from WPA3 to WPA2, with the malicious intent of exploiting known security flaws.
View Article and Find Full Text PDFSci Rep
August 2025
Department of clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia.
The exponential growth of digital technologies has brought about a surge in the complexity and frequency of cyber-attacks, necessitating robust cyber security measures. This study introduces an innovative approach to cyber security data analysis by leveraging Convolutional Neural Network (CNN) technology. The primary objective is to explore the potential of CNNs in accurately and efficiently detecting and classifying cyber security threats.
View Article and Find Full Text PDF