Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This paper presents a hybrid adaptive approach based on machine learning (ML) for classifying incoming traffic, feature selection and thresholding, aimed at enhancing downgrade attack detection in Wi-Fi Protected Access 3 (WPA3) networks. The fast proliferation of WPA3 is regarded critical for securing modern Wi-Fi systems, which have become integral to 5G and Beyond (5G&B) Radio Access Networks (RAN) architecture. However, the wireless communication channel remains inherently susceptible to downgrade attacks, where adversaries intentionally cause networks to revert from WPA3 to WPA2, with the malicious intent of exploiting known security flaws. Traditional Intrusion Detection Systems (IDS), which rely on fixed-threshold statistical methods, often fail to adapt to changing network environments and new, sophisticated attack strategies. To address this limitation, we introduce a novel ML-based Feature Selection and Thresholding for Downgrade Attacks Detection (MFST-DAD) approach, which comprises three stages: traffic data preprocessing, baseline adaptive feature selection, and real-time detection and prevention using ML algorithms. Experimental results on a specially generated dataset demonstrate that the proposed approach detects downgrade attacks in WPA3 networks, achieving 99.8% accuracy with a Naive Bayes classifier in both WPA3 personal and enterprise transition modes. These findings confirm the effectiveness of our proposed approach in securing next-generation Wi-Fi systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12404434 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0331443 | PLOS |