98%
921
2 minutes
20
An oat protein isolate is an ideal raw material for producing a wide range of plant-based products. However, oat protein exhibits weak functional properties, particularly in emulsification. Casein-based ingredients are commonly employed to enhance emulsifying properties as a general practice in the food industry. pH-shifting processing is a straightforward method to partially unfold protein structures. This study modified a mixture of an oat protein isolate (OPI) and casein by combining a pH adjustment (adjusting the pH of two solutions to 12, mixing them at a 3:7 ratio, and maintaining the pH at 12 for 2 h) with an atmospheric cold plasma (ACP) treatment to improve the emulsifying properties. The results demonstrated that the ACP treatment significantly enhanced the solubility of the OPI/casein mixtures, with a maximum solubility of 82.63 ± 0.33%, while the ζ-potential values were approximately -40 mV, indicating that all the samples were fairly stable. The plasma-induced increase in surface hydrophobicity supported greater protein adsorption and redistribution at the oil/water interface. After 3 min of treatment, the interfacial pressure peaked at 8.32 mN/m. Emulsions stabilized with the modified OPI/casein mixtures also exhibited a significant droplet size reduction upon extending the ACP treatment to 3 min, decreasing from 5.364 ± 0.034 μm to 3.075 ± 0.016 μm. The resulting enhanced uniformity in droplet size distribution signified the formation of a robust interfacial film. Moreover, the ACP treatment effectively enhanced the emulsifying activity of the OPI/casein mixtures, reaching (179.65 ± 1.96 m/g). These findings highlight the potential application value of OPI/casein mixtures in liquid dairy products. In addition, dairy products based on oat protein are more conducive to sustainable development than traditional dairy products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12346296 | PMC |
http://dx.doi.org/10.3390/foods14152702 | DOI Listing |
Food Res Int
November 2025
School of Life and Health Sciences, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430
This study aimed to examine the impact of composite enzymatic treatment on the physicochemical properties of oat milk, which would provide an effective strategy to improve the stability of plant-based milk. Oat milks treated with individual α-amylase or in combination with the protein glutaminase were produced. The result indicated that composite enzyme treatment significantly changed the physicochemical properties and significantly improved the stability of oat milk.
View Article and Find Full Text PDFJ Food Sci Technol
October 2025
Department of Soil, Plant and Food Science (Di.S.S.P.A.), University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy.
Unlabelled: This study aimed to develop a plant-based cheese alternative with an improved nutritional profile and a texture similar to traditional Italian cow's cheese. The formulation combined a 1:1 blend of chickpea and oat concentrates (PCs), bamboo fiber (BF), and water. A simplex-centroid mixture design was employed to examine how varying these components (PCs: 10-20 g 100 g, BF: 0-10 g 100 g, Water: 60-70 g 100 g) affected the textural and cutting properties of the product.
View Article and Find Full Text PDFFood Chem X
August 2025
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin 300308, China.
In this study, tannic acid (TA) was applied to remodel the structure of quercetin-loaded oat globulin fibrils (UF-Que), to form novel fibril-based composite hydrogels (UF-Que-TA) to encapsulate Que. The hydrogels were prepared by varying the [TA]/[UF] ratio to investigate the impact of TA on gelation behavior, microstructure, molecular interactions, and stability of Que. Physicochemical results indicated that the incorporation of TA significantly enhanced the gel strength and promoted non-covalent interactions including hydrogen bonding, hydrophobic interactions, and ionic interactions.
View Article and Find Full Text PDFPeerJ
September 2025
Department of Field Crops/Faculty of Agriculture, Çanakkale Onsekiz Mart University, Canakkale, Center, Turkey.
Context: Sustainable livestock production depends on efficient pasture management and the continuous monitoring of the health of grazing animals.
Objectives: This study investigated the effects of pasture types and sheep production systems on the hematological traits of Karacabey Merino (German Mutton Merino × Kıvırcık) ewes and lambs grazing on different pasture types throughout the year and reared in a semi-intensive system (control group).
Methods: In this twenty-six-month study, the hematological characteristics of ewes and lambs grazing on natural pastures and in spring (triticale and oat grass pasture), summer (sorghum Sudangrass and wheat stubble pasture), and autumn (triticale and oat grass pasture) were compared with ewes and lambs reared in a semi-intensive system (no pasture for lambs).
Front Plant Sci
August 2025
Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, Shanxi, China.
Background: The Brassinazole-resistant (BZR) family of transcription factors acts as key regulators in brassinosteroid (BR) signaling, influencing plant growth, development, biotic and abiotic stresses. However, systematic analysis of the genes in oat has not been conducted. Moreover, little is known about their functions in osmotic stress, which is a major abiotic stress affecting oat production.
View Article and Find Full Text PDF