98%
921
2 minutes
20
Developing energy-efficient and environmentally benign synthesis protocols is crucial to agricultural waste-based adsorbent preparation. This study prepared novel walnut shell-derived adsorbents by enzymatic modification using a green process, and the as-prepared material was used for methylene blue (MB) removal from wastewater. The results showed that under the optimized conditions (100 mg L methylene blue (MB) solution, pH 7, 30 °C, 120 min adsorption time, and 0.14 g adsorbent dosage), WS-1 exhibited an MB removal efficiency of 93.67%, which was only slightly lower than that of WS-2 that was prepared by further carbonization of WS-1 using the low-temperature hydrothermal method (99.01%). Kinetic analysis confirmed WS-1 exhibited pseudo-second-order adsorption kinetics, which were generally similar to those of WS-2. However, the results obtained by the isotherm model followed by the Langmuir model of WS-1 indicated monolayer adsorption involving combined weak chemisorption and physisorption, which was different from the WS-2 (followed the Freundlich model that inferred multilayer chemisorption). In conclusion, this study successfully converted walnut shells, a type of agricultural waste, into functional adsorbents by a novel, simple, and greener enzymatic modification method, thereby achieving dual benefits of waste valorization and wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12347818 | PMC |
http://dx.doi.org/10.3390/ma18153434 | DOI Listing |
Free Radic Biol Med
September 2025
Department of General Surgery, Jiangnan University Medical Center, Wuxi, PR China. Electronic address:
In oxaliplatin-resistant gastric cancer (GC), multi-omics profiling combined with organoid libraries reveals altered metabolic pathways associated with chemoresistance. We identify a novel lactylation modification at K115 of Poly(RC)-binding protein 2 (PCBP2K115la), which confers functional oxaliplatin resistance. Mechanistic studies demonstrate that the long non-coding RNA BASP1-AS1 assembles a complex containing Unc-51 Like Autophagy Activating Kinase 1 (ULK1) and lactate dehydrogenase A (LDHA), thereby activating LDHA enzymatic activity to increase lactate production.
View Article and Find Full Text PDFAnaerobic methanotrophic archaea (ANME) are crucial to planetary carbon cycling. They oxidise methane in anoxic niches by transferring electrons to nitrate, metal oxides, or sulfate-reducing bacteria. No ANMEs have been isolated, hampering the biochemical investigation of anaerobic methane oxidation.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
National Key Laboratory for Development and Utilization of Forest Food Resources, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
Chestnut (Castanea mollissima Blume) is a nutritionally dense food, notably rich in starch, making it an important natural source of carbohydrates and energy for human diets. However, its high content of rapidly digestible starch (RDS) limits its use in low-glycemic-index (GI) food products. This study developed a synergistic bioprocess combining Lactobacillus plantarum fermentation and pullulanase-catalyzed debranching to enhance the nutritional and structural characteristics of chestnut powder.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia; Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab Ci
This study involves the synthesis of a novel 7-ethoxy-3-formyl-2-morpholino quinoline (MQ) derivative, which was hybridized with aminated chitosan (AMCH) to yield a new AMCH-MQ Schiff base. Structural characterization via H NMR, FTIR, electronic spectra, XRD, and TGA confirmed successful hybridization. Ion exchange capacity decreased from 28.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Zhejiang Key Laboratory of Bioorganic Synthesis, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Huadong Indust
Heparin, a clinically essential anticoagulant, has long been derived from animal sources, posing risks of contamination and supply chain instability. Bioengineered heparin, synthesized via microbial fermentation and enzymatic modification, offers a promising alternative with enhanced safety, homogeneity, and scalability. This review highlights recent advances in heparosan biosynthesis, enzymatic sulfation strategies, and analytical characterization for bioengineered heparin.
View Article and Find Full Text PDF