Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Titanium dioxide (TiO) is one of the most extensively studied oxides as an active catalyst or catalyst support, particularly in energy and environmental applications, but the atomistic mechanisms governing its dynamic response to reactive environments and their correlation to reactivity remain largely elusive. Using in situ environmental transmission electron microscopy (ETEM), synchrotron X-ray diffraction (XRD), ambient-pressure X-ray photoelectron spectroscopy (AP-XPS), temperature-programmed reduction (TPR), reactivity measurements, and theoretical modeling, we reveal the dynamic interplay between oxygen loss and replenishment of anatase TiO under varying reactive conditions. Under H exposure, anatase TiO undergoes surface reduction via lattice oxygen loss, forming TiO. In contrast, CO exposure induces oxygen replenishment, reversing stoichiometry. In mixed H/CO environments, the reverse water-gas shift (RWGS) reaction proceeds selectively on stepped and high-indexed TiO surfaces, whereas the thermodynamically stable TiO(101) surface remains inactive and intact. Critically, H pretreatment generates oxygen vacancies on TiO(101), transforming it into an active TiO or defect-rich surface that catalyzes RWGS. By correlating surface structure, defect dynamics, and gas-phase interactions, this work deciphers the competition between H-driven reduction and CO-driven oxidation pathways at the atomic scale. These insights establish defect engineering as a strategic lever to activate inert TiO facets, advancing the design of adaptive catalysts for sustainable fuel synthesis technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5c06076DOI Listing

Publication Analysis

Top Keywords

anatase tio
12
tio
8
oxygen loss
8
defect-driven redox
4
redox interplay
4
interplay anatase
4
tio surface-structure
4
surface-structure dependent
4
dependent activation
4
activation hydrogenation
4

Similar Publications

Titanium dioxide (TiO) thin films were deposited on glass substrates under HV conditions at room temperature by the physical vapor deposition method. Produced titanium thin films were post-annealed at 573 K at different oxygen flows (0, 9 and 23 cm/s). The influence of different oxygen flows on nano-structure, crystallography, and optical parameters of TiO films was investigated by XRD, AFM, and spectrophotometer in the UV-VIS wavelength range.

View Article and Find Full Text PDF

This study reports the enhanced photoelectrochemical (PEC) performance of TiO/α-FeO heterostructure films fabricated a sequential aerosol-assisted chemical vapour deposition (AACVD) of hematite at 450 °C, followed by atmospheric pressure CVD (APCVD) of anatase TiO with controlled thickness. Structural analyses (XRD, Raman, XPS) confirmed phase purity and oxidation states, while UV-vis spectroscopy revealed a narrowed bandgap and extended visible light absorption for the heterostructures compared to pristine films. The optimized TiO/α-FeO (8 min) photoanode achieved a photocurrent density of 1.

View Article and Find Full Text PDF

Achieving a crack-free, high-surface-area photoanode is essential for maximizing the efficiency of dye-sensitized solar cells (DSSCs). In this work, rutile titanium dioxide (rTiO) nanoflowers were synthesized hydrothermally and then conformally coated with copper(I) oxide (CuO) by RF magnetron sputtering to seal pre-existing cracks and to create a nanothorn surface favorable for dye adsorption. Systematic control of the sputtering time identified 60 min as optimal condition, yielding a photoanode thickness of about 6.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles (TiO-NPs) are widely used in the production of various industrial and commercial products and reported to cause neurotoxicity in Sprague Dawley rats. Fortunellin (FRN) is a potent flavonoid with diverse biological properties. This research was performed to explore the protective role FRN against TiO-NPs induced brain damage.

View Article and Find Full Text PDF

The increasing use of titanium dioxide (TiO) nanoparticles (NPs) has raised concerns related to their environmental accumulation and the associated ecological risks. Understanding the key biomolecular responses of TiO₂ NP-tolerant organisms like Physarum flavicomum GD217 is essential for combating the pollution of and exposure to these NPs. In this study, we employed multi-omics approaches combined with molecular biology techniques to investigate the stress responses of GD217 to mixed-phase TiO₂ NPs (M-TiO₂ NPs).

View Article and Find Full Text PDF