Publications by authors named "Greg D Barber"

Titanium dioxide (TiO) is one of the most extensively studied oxides as an active catalyst or catalyst support, particularly in energy and environmental applications, but the atomistic mechanisms governing its dynamic response to reactive environments and their correlation to reactivity remain largely elusive. Using in situ environmental transmission electron microscopy (ETEM), synchrotron X-ray diffraction (XRD), ambient-pressure X-ray photoelectron spectroscopy (AP-XPS), temperature-programmed reduction (TPR), reactivity measurements, and theoretical modeling, we reveal the dynamic interplay between oxygen loss and replenishment of anatase TiO under varying reactive conditions. Under H exposure, anatase TiO undergoes surface reduction via lattice oxygen loss, forming TiO.

View Article and Find Full Text PDF

The reaction of molybdenum(II) and chromium(II) acetates with squaric acid in degassed and deionized water under hydrothermal conditions at 150 °C is described. The products have been formulated as M(μ-OH)(μ-CO)(HO)·2HO, where M = Cr () and Mo (), based on combustion elemental analysis, infrared spectroscopy, magic angle spinning (MAS) solid-state carbon-13 nuclear magnetic resonance (NMR), and single-crystal X-ray diffraction. The edge-shared bioctahedral structures involve doubly bridging hydroxide ligands and μ-squarate ligands.

View Article and Find Full Text PDF

A 20-period-thick chiral sculptured thin film (STF) of zinc selenide was fabricated on a glass slide by thermal evaporation. A variable-angle spectroscopic system was devised and used to measure all eight of the circular remittances of the chiral STF as functions of the angle of incidence and the free-space wavelength. Thereby, the center wavelength and the bandwidth of the circular Bragg phenomenon exhibited by structurally chiral materials such as cholesteric liquid crystals and chiral STFs were comprehensively characterized for incidence angles in the range [0°,70°].

View Article and Find Full Text PDF

Water-splitting dye-sensitized photoelectrochemical (WS-DSPECs) cells employ molecular sensitizers to absorb light and transport holes across the TiO2 surface to colloidal or molecular water oxidation catalysts. As hole diffusion occurs along the surface, electrons are transported through the mesoporous TiO2 film. In this paper we report the effects of electron trapping and protonation in the TiO2 film on the dynamics of electron and hole transport in WS-DSPECs.

View Article and Find Full Text PDF

Light incident upon a periodically corrugated metal/dielectric interface can generate surface plasmon polariton (SPP) waves. This effect is used in many sensing applications. Similar metallodielectric nanostructures are used for light trapping in solar cells, but the gains are modest because SPP waves can be excited only at specific angles and with one linear polarization state of incident light.

View Article and Find Full Text PDF

We report a quantitative comparison of the photoaction spectra, short circuit current densities, and power conversion efficiencies of dye-sensitized solar cells (DSSCs) that contain bilayers of nanocrystalline TiO2 (nc-TiO2) and titania inverse opal photonic crystals (PCs). Cells were fabricated with PC/nc-TiO2 and nc-TiO2/PC bilayer films on glass/tin oxide anode of the cell, as well as in a split configuration in which the nc-TiO2 and PC layers were deposited on the anode and cathode sides of the cell, respectively. Incident photon current efficiencies at single wavelengths and current-voltage curves in white light were obtained with both cathode and anode side illumination.

View Article and Find Full Text PDF