Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Objective: Acute pancreatitis (AP) is a severe inflammatory disease associated with dysregulated glycolysis and mitochondrial dysfunction. This study investigates the therapeutic potential of quercetin, a novel PFKFB3 inhibitor, in modulating glycolysis and mitochondrial function to alleviate AP.
Methods: We conducted homology analysis of the PFKFB3 protein and identified quercetin as a potential inhibitor through molecular docking. In vitro experiments using a cerulein-induced inflammatory pancreatic cell model assessed the effects of quercetin on PFKFB3 expression, glycolysis, and mitochondrial function. In vivo validation was performed using an AP rat model to evaluate the impact on inflammation, tissue damage, and metabolic status.
Results: Quercetin significantly reduced PFKFB3 expression, inhibited glycolysis, and improved mitochondrial function in inflammatory pancreatic cells. In the AP rat model, quercetin treatment decreased serum amylase and lipase levels, reduced inflammatory markers (TNF-α and IL-6), and alleviated pancreatic tissue damage, as evidenced by histological analysis.
Conclusion: Quercetin effectively modulates glycolysis and mitochondrial function by inhibiting PFKFB3, thereby reducing inflammation and tissue damage in AP. These findings highlight the potential of quercetin as a novel therapeutic agent for AP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12350963 | PMC |
http://dx.doi.org/10.1007/s00018-025-05845-z | DOI Listing |