98%
921
2 minutes
20
Ocean circulations and water mass exchange can exert significant influences on seawater biogeochemistry, microbial communities, and carbon cycling in marine systems. However, the detailed mechanisms of the impacts of physical processes in the open ocean on the cycle of greenhouse gases, particularly methane, remain poorly understood. In this study, we integrated high-resolution underway observations, experimental incubations, radioisotope labelling, and molecular analysis to constrain the controls of methanogenic pathways, methanotrophic activity, and emission fluxes in the highly hydrodynamic Kuroshio and Oyashio Extension (KOE) region of the Northwest Pacific. The mixing of high-temperature, nutrient-rich Kuroshio waters with methane-rich Oyashio currents significantly affected not only methane abundance, but also methane production pathways and oxidation rates. Water mass mixing caused changes in the dominance of phytoplankton communities to , with less production of the methane precursor dimethylsulphoniopropionate, thus reducing dimethylsulphoniopropionate-dependent methanogenesis. The alteration of nutrient levels due to mixing of Kuroshio and Oyashio at KOE is also likely to affect microbial utilization of dissolved organic phosphorus, thus influencing methane production from the C-P cleavage of methylphosphonate. Furthermore, the abundances of methanotrophs, such as and , were much higher at the KOE sites than those observed at the Oyashio Extension, which contributed to elevated methane oxidation rates in the mixing region. Microbial oxidation as a biological sink of methane accounted for ~43.7% ± 28.8% of the total methane loss, which reduced methane emissions to the atmosphere. These data highlight the physical controls on biogeochemical methane cycling, indicating that intensive mixing of water masses may regulate methane emissions from the open oceans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342928 | PMC |
http://dx.doi.org/10.1093/ismeco/ycaf114 | DOI Listing |
Pestic Biochem Physiol
November 2025
Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China; Institute of Ecological Environmental Protection and Pollution Remediation Engineering, Anhui Agricultural U
Neonicotinoid insecticides residuals pose a threat to aquatic ecosystems and human health. Imidaclothiz, as a novel neonicotinoid pesticide, the metabolic mechanisms in aquatic environments was unclear. This study investigated the degradation characteristics of imidaclothiz in both pure and actual water, and analyzed the photodegradation and hydrolysis metabolites of imidaclothiz in aquatic environments and assessed their toxicity.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Chemical and Veterinary Investigations Office Stuttgart, Schaflandstraße 3/2, 70736, Fellbach, Germany.
Background: Previous studies involving cleanup via conventional solid-phase extraction (SPE) materials to overcome matrix effects for the polar organophosphonate and -phosphinate pesticides glyphosate, glufosinate, ethephon, fosetyl, and their various metabolites often showed limitations due to the existence of various matrix compounds in plant commodities with similar polarity. To overcome existing drawbacks, we utilized the unique selectivity provided by metal oxides as SPE materials. These were exploited in a novel automated online SPE-LC-MS/MS method which allowed analyte-specific trapping in the presence of excessive amounts of matrix compounds as typically contained in extracts of the Quick Polar Pesticides (QuPPe) method.
View Article and Find Full Text PDFJ Chromatogr A
September 2025
Agro-Food Technology and Quality Laboratory, Regional Center of Agricultural Research of Meknes, National Institute of Agricultural Research, Rabat, Morocco. Electronic address:
The composition of the injection solvent is a critical, yet often underestimated, parameter in liquid chromatography-tandem mass spectrometry (LC-MS/MS). This study systematically evaluates the influence of injection solvent on the analysis of 90 pesticides by comparing mixtures of acetonitrile (ACN) with water and buffered mobile phase A (5 mM ammonium formate, 0.1% formic acid) across various ratios (10/90 to 50/50, v/v).
View Article and Find Full Text PDFSmall Methods
September 2025
School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China.
Magnetic-field enhancement of the oxygen evolution reaction (OER) represents a promising route toward more efficient alkaline water electrolyzers, yet its origin remains debated due to overlapping effects of mass transport and reaction kinetics. Here, we present a general experimental strategy that employs strong forced convection to suppress uncontrolled transport arising from natural diffusion and magnetohydrodynamic (MHD) flows. Using polycrystalline Au electrodes, we show that this approach resolves subtle OER variations under controlled flow and field conditions.
View Article and Find Full Text PDFInt J Infect Dis
September 2025
Department of Laboratory Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China. Electronic address:
Prototheca, a genus of opportunistic pathogenic microalgae, can cause protothecosis in humans and animals, manifesting as cutaneous lesions or disseminated/systemic infections. This report describes a rare case of Prototheca wickerhamii toe infection in a 78-year-old Chinese male, presenting initially as gouty arthritis. The patient, who worked in fish farming with frequent water exposure, had a history of herpes zoster and hypertension.
View Article and Find Full Text PDF