Unraveling the role of discoidin domain receptors as an anti-fibrotic target in various organs: A comprehensive review.

Int J Biol Macromol

Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China. Electronic address:

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Discoidin domain receptors (DDRs) are a family of tyrosine kinase transmembrane receptors composed of discoidin domain receptor 1 (DDR1) and discoidin domain receptor 2 (DDR2) that interact with components of the extracellular matrix. They are involved in a broad range of important physiological processes, such as extracellular matrix signaling, cell adhesion, cell migration, and tissue fibrosis. DDR1 and DDR2 are expressed in a variety of cell and tissue types, but their expression patterns are variable and dependent on receptor type and physiological environment. Considering that the activation of DDRs mainly depends on the extracellular matrix, namely collagen, this fact therefore establishes DDRs as an attractive anti-fibrotic target with broad therapeutic potential. The role of DDRs has been demonstrated in several types of fibrotic diseases, including liver cirrhosis, renal fibrosis, pulmonary fibrosis, cardiovascular stiffening, and skin hypertrophic scars. The focus of this present review is: a) describing the molecular structure and ligand interactions of DDRs; b) clarifying the expression and tissue functions of DDRs; c) understanding the mechanism of endocytosis and cleavage of the ectodomain; d) detailing collagen remodeling and alignment by DDRs; e) outlining signaling pathways activated by DDRs; f) raising the evidence that DDRs are the target of anti-fibrotic actions in different organs; g) detailing pharmacological efforts that have been made so far to target this subtle anti-fibrotic target.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.146739DOI Listing

Publication Analysis

Top Keywords

discoidin domain
16
anti-fibrotic target
12
extracellular matrix
12
ddrs
9
domain receptors
8
domain receptor
8
target
5
unraveling role
4
discoidin
4
role discoidin
4

Similar Publications

Modulating tumor collagen fiber alignment for enhanced lung cancer immunotherapy via inhaled RNA.

Nat Commun

August 2025

Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China.

The clinical effectiveness of immunotherapies for lung cancers has been greatly hindered by the immune-excluded and immunosuppressive tumor microenvironment (TME) and limited pulmonary accessibility of therapeutics. Here, we develop an inhalable lipid nanoparticle (LNP) system that enables simultaneous delivery of mRNA encoding anti-discoidin domain receptor 1 (DDR1) single-chain variable fragments (mscFv) and siRNA targeting PD-L1 (siPD-L1) into pulmonary cancer cells. The secreted anti-DDR1 scFv blocks the binding of DDR1 extracellular domain to collagen, disrupting collagen fiber alignment and reducing tumor stiffness, thereby facilitating T cell infiltration.

View Article and Find Full Text PDF

Discoidin domain receptor 1 (DDR1), a collagen-binding receptor tyrosine kinase, plays a key role in extracellular matrix remodeling, tumor progression, and immune evasion. However, DDR1's comprehensive role across diverse cancers and its therapeutic potential in immune-resistant tumors remain poorly defined. We performed a pan-cancer analysis integrating bulk transcriptomic datasets, single-cell RNA sequencing, and pathway enrichment to evaluate expression, genetic alterations, and its associations with immune cell infiltration and clinical outcomes.

View Article and Find Full Text PDF

Discoidin, CUB and LCCL domain containing 2 modulates angiogenesis by inhibiting VEGF receptor 2 endocytosis in endothelial cells.

J Mol Med (Berl)

September 2025

Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China, 050017.

The internalization of vascular endothelial growth factor receptor-2 (VEGFR-2) occurs in response to VEGF treatment, and it is eventually transported to the plasma membrane by several endosomes such as Rab5 and Rab11, which are responsible for transporting vesicles from the cytoplasm to plasma membrane. Therefore, the homeostasis of VEGFR-2 internalization and recycling is critical for maintaining the normality of the VEGF signaling pathway and regulates angiogenesis. Previous studies have shown that discoidin, CUB and LCCL domain containing 2 (DCBLD2) can promote the proliferation and migration of vascular endothelial cells (ECs) by promoting the VEGF signaling pathway, but the potential role of DCBLD2 on VEGFR-2 endocytosis remains unclear.

View Article and Find Full Text PDF

Collagen alpha-5(IV) chain activation by nuclear factor 1/C promotes nasopharyngeal carcinoma progression.

Hum Cell

August 2025

Department of Ear-Nose-Throat, The Second People's Hospital of Huai'an, Huai'an Affiliated Hospital of Xuzhou Medical University, No. 60, Huaihai South Road, Qingjiangpu District, Huai'an, 223000, Jiangsu, People's Republic of China.

The expression of collagen receptors by cancer cells serves a vital function in the regulation of cell behavior. These receptors are capable of sensing the signals generated by alterations in the collagen state, thereby contributing to the maintenance of cellular homeostasis. The discoidin domain receptor (DDR)1 functions as a critical sensor of collagen fiber state and composition, regulating tumor cell growth, response to therapy, and patient survival.

View Article and Find Full Text PDF

Unraveling the role of discoidin domain receptors as an anti-fibrotic target in various organs: A comprehensive review.

Int J Biol Macromol

September 2025

Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China. Electronic address:

Discoidin domain receptors (DDRs) are a family of tyrosine kinase transmembrane receptors composed of discoidin domain receptor 1 (DDR1) and discoidin domain receptor 2 (DDR2) that interact with components of the extracellular matrix. They are involved in a broad range of important physiological processes, such as extracellular matrix signaling, cell adhesion, cell migration, and tissue fibrosis. DDR1 and DDR2 are expressed in a variety of cell and tissue types, but their expression patterns are variable and dependent on receptor type and physiological environment.

View Article and Find Full Text PDF