98%
921
2 minutes
20
Background: Chronological age is an important component of medical risk scores and decision-making. However, there is considerable variability in how individuals age. We recently published an open-source deep learning model to assess biological age from chest radiographs (CXR-Age), which predicts all-cause and cardiovascular mortality better than chronological age. Here, we compare CXR-Age to two established epigenetic aging clocks (First generation-Horvath Age; Second generation-DNAm PhenoAge) to test which is more strongly associated with cardiopulmonary disease and frailty.
Methods: Our cohort consisted of 2,097 participants from the Project Baseline Health Study, a prospective cohort study of individuals from four US sites. We compared the association between the different aging clocks and measures of cardiopulmonary disease, frailty, and protein abundance collected at the participant's first annual visit using linear regression models adjusted for common confounders.
Results: We found that CXR-Age was associated with coronary calcium, cardiovascular risk factors, worsening pulmonary function, increased frailty, and abundance in plasma of two proteins implicated in neuroinflammation and aging. Associations with DNAm PhenoAge were weaker for pulmonary function and all metrics in middle-age adults. We identified thirteen proteins that were associated with DNAm PhenoAge, one (CDH13) of which was also associated with CXR-Age. No associations were found with Horvath Age.
Conclusion: These results suggest that CXR-Age may serve as a better metric of cardiopulmonary aging than epigenetic aging clocks, especially in midlife adults.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/gerona/glaf173 | DOI Listing |
Aging Cell
September 2025
Department of Epidemiology, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA.
Epigenetic clocks have emerged as promising biomarkers of aging, but their responsiveness to lifestyle interventions and relevance for short-term changes in cardiometabolic health remain uncertain. In this study, we examined the associations between three epigenetic aging measures (DunedinPACE, PCPhenoAge acceleration, and PCGrimAge acceleration) and a broad panel of cardiometabolic biomarkers in 144 obese participants from the MACRO trial, a 12-month weight-loss dietary intervention comparing low-carbohydrate and low-fat diets. At pre-intervention baseline, DunedinPACE was significantly associated with several cardiometabolic biomarkers (FDR [false discovery rate] < 0.
View Article and Find Full Text PDFmedRxiv
August 2025
Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany.
Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with a largely unknown duration and pathophysiology of the pre-diagnostic phase, especially for the common non-monogenic form.
Methods: We leveraged the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort with up to 30 years of follow-up to identify incident ALS cases across five European countries. Pre-diagnostic plasma samples from initially healthy participants underwent high-throughput proteomic profiling (7,285 protein markers, SomaScan).
Front Aging Neurosci
August 2025
Department of Rehabilitation Medicine, The Second Affiliated Hospital of Jiaxing University, The Second Hospital of Jiaxing, Jiaxing, China.
Objective: This study aimed to investigate the effects of computer-assisted cognitive training (CACT) on cognitive function and activities of daily living in patients with post-stroke cognitive impairment. Additionally, it aimed to explore the changes in specific cognitive domains before and after treatment.
Design: The study was a double-blind, randomized, controlled trial.
Aging increases the global burden of disease, yet its molecular basis remains incompletely understood. Recent studies indicate that reversible epigenetic drift-spanning DNA methylation clocks, histone codes, three-dimensional chromatin, and noncoding RNA networks-constitutes a central regulator of organismal decline and age-related diseases. How these epigenetic layers interact across different tissues-and how best to translate them into therapeutic strategies-are still open questions.
View Article and Find Full Text PDFNPJ Metab Health Dis
September 2025
ATLAS Molecular Pharma, Parque Tecnológico de Bizkaia, Ed. 800, 48160, Derio, Spain.
Molecular aging clocks estimate biological age from molecular biomarkers and often outperform chronological age in predicting health outcomes. Types include epigenetic, transcriptomic, proteomic, and metabolomic clocks. NMR-based metabolomic clocks provide a non-invasive, high-throughput platform to assess metabolic health.
View Article and Find Full Text PDF