Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biological invasions are one of the major drivers of biodiversity decline and have been shown to have far-reaching consequences for society and the economy. Preventing the introduction and spread of alien species represents the most effective solution to reducing their impacts on nature and human well-being. However, implementing effective solutions requires a good understanding of where the species are established and how biological invasions develop over time. Knowledge of the status and trends of biological invasions is thus key for guiding research efforts, informing stakeholders and policymakers, for targeted management efforts, and preparing for the future. However, information about the status and trends of alien species is scattered, patchy, and highly incomplete, making it difficult to assess. Published reports for individual regions and taxonomic groups are available, but large-scale overviews are scarce. A global assessment therefore requires a review of available knowledge with careful consideration of sampling and reporting biases. This paper provides a comprehensive global assessment of the status and trends of alien species for major taxonomic groups [Bacteria, Protozoa, Stramenopila, Alveolata, and Rhizaria (SAR), fungi, plants, and animals] for Intergovernmental Panel of Biodiversity and Ecosystem Services (IPBES) regions. The review provides irrefutable evidence that alien species have been introduced to all regions worldwide including Antarctica and have spread to even the most remote islands. The numbers of alien species are increasing within all taxa and across all regions, and are often even accelerating. Large knowledge gaps exist, particularly for taxonomic groups other than vascular plants and vertebrates, for regions in Africa and Central Asia, and for aquatic realms. In fact, for inconspicuous species, such as Bacteria, Protozoa, and to some degree SAR and fungi, we found records for very few species and regions. Observed status and trends are thus highly influenced by research effort. More generally, it is likely that all lists for alien species of any taxonomic group and region are incomplete. The reported species numbers therefore represent minima, and we can expect additions to all lists in the near future. We identified six key challenges which need to be addressed to reduce knowledge gaps and to improve our ability to assess trends and status of biological invasions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/brv.70058DOI Listing

Publication Analysis

Top Keywords

alien species
24
biological invasions
20
status trends
16
global assessment
12
taxonomic groups
12
species
10
trends alien
8
sar fungi
8
knowledge gaps
8
trends
6

Similar Publications

Background: Clubroot, caused by Plasmodiophora brassicae, significantly impacts cruciferous crop production worldwide. Biocontrol is an environmentally friendly and promising approach for clubroot management. Endophytic bacteria are known for their ability to promote plant growth and induce resistance against plant diseases.

View Article and Find Full Text PDF

Due to anthropogenic pressure some species have declined whereas others have increased within their native ranges. Simultaneously, many species introduced by humans have established self-sustaining populations elsewhere (i.e.

View Article and Find Full Text PDF

Introduced pathogens exert novel selection on hosts, and although many host species have experienced drastic population declines in the absence of adaptation, some hosts have adapted to highly virulent pathogens. For instance, mosquitoes and introduced to the Hawaiian Islands have resulted in extinctions and catastrophic population declines due to avian malaria, particularly in the diverse clade of Hawaiian honeycreepers. However, some species, such as the Hawai'i 'amakihi (), can survive infection.

View Article and Find Full Text PDF

Invasive predatory fish occupies highest trophic position leading to expansion of isotopic niches in a riverine food web.

Ecology

September 2025

U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, Pennsylvania, USA.

Invasive species are drivers of ecological change with the potential to reshape the structure and function of terrestrial and aquatic ecosystems. The invasive flathead catfish (Pylodictis olivaris) is an opportunistic predator that has established a rapidly growing population in the Susquehanna River, Pennsylvania, USA, since they were first detected in 2002. Although the predatory effects of invasive catfishes on native fish communities have been documented, the effects of invasion on riverine food webs are poorly understood.

View Article and Find Full Text PDF

An extended lifespan of Poa annua may be of adaptive value during the invasion of harsh environments. Our aim was to investigate whether this trait is population-specific or general for the species. Individuals representing eight populations were cultivated under experimental conditions for two Antarctic growing seasons separated by polar winter conditions.

View Article and Find Full Text PDF