Invasive predatory fish occupies highest trophic position leading to expansion of isotopic niches in a riverine food web.

Ecology

U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, Pennsylvania, USA.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Invasive species are drivers of ecological change with the potential to reshape the structure and function of terrestrial and aquatic ecosystems. The invasive flathead catfish (Pylodictis olivaris) is an opportunistic predator that has established a rapidly growing population in the Susquehanna River, Pennsylvania, USA, since they were first detected in 2002. Although the predatory effects of invasive catfishes on native fish communities have been documented, the effects of invasion on riverine food webs are poorly understood. This study quantified the effects of invasive flathead catfish on the trophic position (TP) and isotopic niche of the river's food web by comparing invaded and non-invaded sites. In addition to flathead catfish, the food web components examined included crayfish, minnows, and two ecologically and socioeconomically important fish species: the smallmouth bass (Micropterus dolomieu) and channel catfish (Ictalurus punctatus). We found that flathead catfish occupied the highest TP, with a posterior mean TP of 3.08 (95% credible interval = [2.71, 3.42]), exceeding that of the two resident fish predators, the smallmouth bass and channel catfish. The TP of the resident channel catfish, which occupies a similar ecological niche, declined after flathead catfish invasion. In fact, there was a 0.92 posterior probability that channel catfish TP was lower in invaded sites than at non-invaded sites. Using a Bayesian bivariate ellipses analysis, we found overwhelming evidence of isotopic niche expansion and overlap for all components of the food web in the presence of flathead catfish. These findings support the "trophic disruption hypothesis," where an introduced species prompts resident species to change diets in an attempt to avoid competition and predation following invasion. Our results indicate that flathead catfish invasion is altering food web structure and energy flow in a large riverine ecosystem and contributes to the breadth of knowledge regarding how ecosystems may respond to the introduction of a large predatory fish species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12411813PMC
http://dx.doi.org/10.1002/ecy.70180DOI Listing

Publication Analysis

Top Keywords

flathead catfish
28
food web
20
channel catfish
16
catfish
11
predatory fish
8
trophic position
8
riverine food
8
invasive flathead
8
effects invasive
8
isotopic niche
8

Similar Publications

Invasive predatory fish occupies highest trophic position leading to expansion of isotopic niches in a riverine food web.

Ecology

September 2025

U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, Pennsylvania, USA.

Invasive species are drivers of ecological change with the potential to reshape the structure and function of terrestrial and aquatic ecosystems. The invasive flathead catfish (Pylodictis olivaris) is an opportunistic predator that has established a rapidly growing population in the Susquehanna River, Pennsylvania, USA, since they were first detected in 2002. Although the predatory effects of invasive catfishes on native fish communities have been documented, the effects of invasion on riverine food webs are poorly understood.

View Article and Find Full Text PDF

Industrial expansion and population growth have lowered water quality, polluting aquatic ecosystems world-wide. Metal pollution in the rivers across the United States are a major health concern. The level of metal contamination in fish from the Lower Mississippi River Basin and their threat to public health were last evaluated 20 years ago.

View Article and Find Full Text PDF

Population genetic analysis of invasive populations can provide valuable insights into the source of introductions, pathways for expansion, and their demographic histories. Flathead catfish (Pylodictis olivaris) are a prolific invasive species with high fecundity, long-distance dispersal, and piscivorous feeding habits that can lead to declines in native fish populations. In this study, we analyse the genetics of invasive P.

View Article and Find Full Text PDF
Article Synopsis
  • Manzala Lake was analyzed to evaluate heavy metal concentrations and their ecological risks in local fish species.
  • The study found that the mercury, arsenic, lead, and cadmium levels in fish muscles exceeded recommended limits, with African catfish showing the highest concentrations.
  • The research indicated significant health risks associated with consuming these fish due to high toxicity values, necessitating stricter hygiene practices to reduce contamination and ensure safety.
View Article and Find Full Text PDF

There is a pressing need for more-holistic approaches to fisheries assessments along with growing demand to reduce the health impacts of sample collections. Metabolomic tools enable the use of sample matrices that can be collected with minimal impact on the organism (e.g.

View Article and Find Full Text PDF