98%
921
2 minutes
20
Owing to the unique mechano-optical response, mechanoluminescence (ML) materials possess dynamic, sensitive, visual, and recoverable strain sensing capabilities. However, the dilemma of lacking outstanding ML materials with high detection precision under micro deformations still exists, thereby hindering advanced applications in multi-angle and multidimensional scenarios. Herein, a novel Pr-doped perovskite oxide (NaTaO:Pr)-based composite elastic thin film is developed, which achieves ultrasensitive ML responses to both microscale compressive and tensile strains. Compared with the record of LiTaO:Tb, the corresponding deformation detection limit has been improved by five times, reaching 0.01%, which is comparable to the performance of the widely used piezoresistive and capacitive sensors. The results reveal that the ML originates from the interaction between adjacent defects and the varying local piezoelectric fields near PrO and PrO polyhedra. Most notably, the strain and ML demonstrate identical distributions on a 3D-printed model coated with NaTaO:Pr thin film even under micro deformation less than 0.4%, highlighting the significant potential of NaTaO:Pr for advanced 3D microstrain sensing applications. This work provides convincing insights into the investigation of ML mechanisms through local trap and piezoelectricity analyses, along with an exemplificative application in advanced strain sensing and visualization at microscopic and multidimensional scales.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202510747 | DOI Listing |
Trans R Soc Trop Med Hyg
September 2025
Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France.
Background: In 2023, Mayotte, a French department in the Mozambique channel, experienced a long drought that led to potable water restrictions. Although the French vaccination schedule makes polio vaccination compulsory for children, the large proportion of migrants on the island coupled with the water crisis raised concerns about the establishment of poliovirus transmission chains. Therefore, a surveillance was implemented to detect polioviruses in sewage sampled in the two main wastewater treatment plants.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China. Electronic address:
The rice foot rot disease caused by Dickeya oryzae is an important bacterial disease that could cause tremendous economic losses. The virulence factor modulating cluster (Vfm) quorum sensing (QS) system, a major virulence regulatory mechanism conserved in the Dickeya genus, controls the production of zeamines and various extracellular cell wall degradation enzymes in D. oryzae.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, China.
Conductive hydrogels have revolutionized wearable electronics due to their biocompatibility and tunable properties. However, it remains a great challenge for hydrogel-based sensors to maintain both conductivity and mechanical integrity in harsh environments. Synergistic dynamic interactions provide a promising strategy to address this issue.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, N
Hydrogel actuators show tremendous promise for applications in soft robots and artificial muscles. Nevertheless, developing a stretchable hydrogel actuator combining remote actuation and real-time signal feedback remains a challenge. Herein, a light-responsive hydrogel actuator with self-sensing function is fabricated by employing a localized immersion strategy to incorporate polyacrylamide (PAM) hydrogel network into semi-interpenetrating carbon nanotube/2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofiber/poly(N-isopropylacrylamide) (CNT/TOCN/PNIPAM) hydrogel.
View Article and Find Full Text PDFACS Sens
September 2025
The State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Tactile sensing arrays play a crucial role in human-machine interaction, robotics, and artificial intelligence by enabling the perception of physical stimuli on robotic surfaces or human skin. However, skin-attachable sensor arrays still suffer from strain interference and signal crosstalk under stretching or bending, particularly on curved or deformable surfaces. Here, we present a stretchable tactile array that is both strain-insensitive and crosstalk-suppressed, achieved via a hierarchically segmented design that mitigates lateral and vertical deformations synergistically.
View Article and Find Full Text PDF