6-Hydroxynicotinic Acid From Cucumis melo Inhibits Prehaustorium Formation in Phelipanche aegyptiaca via Disruption of Auxin Signalling Pathway.

Mol Plant Pathol

Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phelipanche aegyptiaca, a root holoparasitic weed, severely threatens agricultural productivity due to its detrimental effects. This species relies on a specialised organ, namely the haustorium, to extract nutrients from its host plants. The germination and haustorium formation of P. aegyptiaca are initiated by sensing host plant root exudates. Differences in exudate composition are crucial markers of host resistance. Host plant root exudates significantly influence the development and survival of P. aegyptiaca. To identify root exudates affecting the parasitic weed's growth, we analysed differential metabolites in resistant and susceptible Cucumis melo varieties. Among these, 6-hydroxynicotinic acid was identified as a key compound. Prehaustorium formation, which is induced by haustorium-inducing factors, such as indole-3-acetic acid (IAA), was suppressed in the presence of 6-hydroxynicotinic acid. This compound exerts an inhibitory effect by reducing the expression of genes related to the auxin signalling pathway of P. aegyptiaca, thus weakening parasitism. Our results support a model in which 6-hydroxynicotinic acid inhibits prehaustorium development in P. aegyptiaca by disrupting gene expression and endogenous metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339233PMC
http://dx.doi.org/10.1111/mpp.70137DOI Listing

Publication Analysis

Top Keywords

6-hydroxynicotinic acid
16
root exudates
12
cucumis melo
8
inhibits prehaustorium
8
prehaustorium formation
8
phelipanche aegyptiaca
8
auxin signalling
8
signalling pathway
8
host plant
8
plant root
8

Similar Publications

6-Hydroxynicotinic Acid From Cucumis melo Inhibits Prehaustorium Formation in Phelipanche aegyptiaca via Disruption of Auxin Signalling Pathway.

Mol Plant Pathol

August 2025

Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang, China.

Phelipanche aegyptiaca, a root holoparasitic weed, severely threatens agricultural productivity due to its detrimental effects. This species relies on a specialised organ, namely the haustorium, to extract nutrients from its host plants. The germination and haustorium formation of P.

View Article and Find Full Text PDF

High-altitude pulmonary edema (HAPE) is a life-threatening altitude sickness afflicting certain individuals after rapid ascent to high altitude above 2500 m. In the setting of HAPE, an early diagnosis is critical and currently based on clinical evaluation. The aim of this study was to utilize the metabolomics to identify the altered metabolic patterns and potential biomarkers for HAPE.

View Article and Find Full Text PDF

Background: IL-33, a pleiotropic cytokine, has been associated with a plethora of immune-related processes, both inflammatory and anti-inflammatory. T regulatory (Treg) cells, the main leukocyte population involved in immune tolerance, can be induced by the administration of IL-33, the local microbiota, and its metabolites. Here, we demonstrate that IL-33 drastically induces the production of intestinal metabolites involved on tryptophan (Trp) metabolism.

View Article and Find Full Text PDF

Intercropping leads to different plant roots directly influencing belowground processes and has gained interest for its promotion of increased crop yields and resource utilization. However, the precise mechanisms through which the interactions between rhizosphere metabolites and the microbiome contribute to plant production remain ambiguous, thus impeding the understanding of the yield-enhancing advantages of intercropping. This study conducted field experiments (initiated in 2013) and pot experiments, coupled with multi-omics analysis, to investigate plant-metabolite-microbiome interactions in the rhizosphere of maize.

View Article and Find Full Text PDF

Sesame bacterial wilt significantly alters rhizosphere soil bacterial community structure, function, and metabolites in continuous cropping systems.

Microbiol Res

May 2024

Soil Fertilizer and Resource Environment Institute, Jiangxi Academy of Agricultural Sciences, No. 602, Nanlian Road, Nanchang, Jiangxi Province 330200, PR China; Key Laboratory of Crop Ecophysiology and Farming System for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture

Bacterial wilt is the leading disease of sesame and alters the bacterial community composition, function, and metabolism of sesame rhizosphere soil. However, its pattern of change is unclear. Here, the purpose of this study was to investigate how these communities respond to three differing severities of bacterial wilt in mature continuously cropped sesame plants by metagenomic and metabolomic techniques, namely, absence (WH), moderate (WD5), and severe (WD9) wilt.

View Article and Find Full Text PDF