98%
921
2 minutes
20
Background: IL-33, a pleiotropic cytokine, has been associated with a plethora of immune-related processes, both inflammatory and anti-inflammatory. T regulatory (Treg) cells, the main leukocyte population involved in immune tolerance, can be induced by the administration of IL-33, the local microbiota, and its metabolites. Here, we demonstrate that IL-33 drastically induces the production of intestinal metabolites involved on tryptophan (Trp) metabolism.
Methods: naïve mice were treated with IL-33 for 4 days and leukocyte populations were analyzed by flow cytometry, and feces were processed for microbiota and intestinal metabolites studies. Using a murine skin transplantation model, the effect of Kynurenic acid (KA) on allograft survival was tested.
Results: Under homeostatic conditions, animals treated with IL-33 showed an increment in Treg cell frequencies. Intestinal bacterial abundance analysis indicates that IL-33 provokes dysbiosis, demonstrated by a reduction in and an increment in genera. Furthermore, metabolomics analysis showed a dramatic IL-33 effect on the abundance of intestinal metabolites related to amino acid synthesis pathways, highlighting molecules linked to Trp metabolism, such as kynurenic acid (KA), 5-Hydroxyindoleacetic acid (5-HIAA), and 6-Hydroxynicotinic acid (6-HNA), which was supported by an enhanced expression of and mRNA in MLN cells, which are two enzymes involved on KA synthesis. Interestingly, animals receiving KA in drinking water and subjected to skin transplantation showed allograft acceptance, which is associated with an increment in Treg cell frequencies.
Conclusions: Our study reveals a new property for IL-33 as a modulator of the intestinal microbiota and metabolites, especially those involved with Trp metabolism. In addition, we demonstrate that KA favors Tregs in vivo, positively affecting skin transplantation survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547499 | PMC |
http://dx.doi.org/10.3390/nu16213655 | DOI Listing |
J Agric Food Chem
September 2025
Center of Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
Creating effective treatments for type 2 diabetes mellitus (T2DM) remains a critical global health challenge. This study investigates the antidiabetic mechanisms of subsp. B-53 ( B-53) in T2DM mice.
View Article and Find Full Text PDFFront Oral Health
August 2025
Conservative Dentistry and Endodontics, AB Shetty Memorial Institute of Dental Sciences, Nitte (deemed to be) University, Mangalore, India.
Short-chain fatty acids (SCFAs), primarily acetate (C2), propionate (C3), and butyrate (C4), are crucial microbial metabolites formed by the fermentation of dietary fibers by gut microbiota in the colon. These SCFAs, characterized by fewer than six carbon atoms, serve as an essential energy source for colonic epithelial cells and contribute approximately 10% of the body's total energy requirement. They are central to maintaining gut health through multiple mechanisms, including reinforcing intestinal barrier function, exerting anti-inflammatory effects, regulating glucose and lipid metabolism, and influencing host immune responses.
View Article and Find Full Text PDFInflamm Bowel Dis
September 2025
Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
Background: Ulcerative colitis (UC) is a gastrointestinal inflammatory condition with an unclear etiology. Recent findings suggest that metabolites play a pivotal role in promoting intestinal health. We have previously observed a significant enrichment in colonic branched-chain amino acids (BCAAs) in resistant mice to colitis suggesting the potential role of these metabolites in UC development.
View Article and Find Full Text PDFInt J Pharm
September 2025
Department of Pharmaceutical Sciences, Via del Liceo 1, 06123 Perugia, Italy. Electronic address:
Indole-3-carboxaldehyde (I3A), a microbial tryptophan metabolite, exhibits significant immunomodulatory activity at the host-microbial interface. However, its rapid transformation into metabolites like indole-3-carboxylic acid (I3CA) raises questions about their therapeutic potential. This study aimed to evaluate the pharmacological contributions of I3CA through the development of a proper delivery strategy.
View Article and Find Full Text PDFEur J Pharm Biopharm
September 2025
Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China. Electronic address:
Prodrugs with enzymatic activation requirements, such as the weakly basic biopharmaceutical classification system (BCS) class IV compound abiraterone acetate (ABA), face considerable bioequivalence (BE) risks owing to their pH-dependent solubility, food effects, and variable intestinal hydrolysis. This study established clinically relevant dissolution specifications for ABA using biorelevant dissolution and physiologically based biopharmaceutics modelling (PBBM). Two dissolution methods, two-stage (gastrointestinal transfer simulation) and single-phase (biorelevant media), were evaluated under fasted and fed conditions.
View Article and Find Full Text PDF