Salinity Stress Induces Phase Separation of Plant BARENTSZ to Form Condensates.

Rice (N Y)

State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phase separation (PS) of BARENTSZ (BTZ), a core member of the exon-junction complex (EJC), is involved in various physiological and developmental processes in animals. However, less is known about plant equivalents. Here, we demonstrated that the loss of function of Oryza sativa BTZ genes (OsBTZs) reduced rice tolerance to salinity stress. Moreover, OsBTZ proteins underwent PS independent of other core members of EJC, forming condensates under salt stress. OsBTZs may recruit proteins that play roles in the salt tolerance response to form cytoplasmic condensates, which act as stress granules. The predicted prion-like domain (PrLD), that originated ancestrally and is functionally conserved, was demonstrated to be key to the PS of OsBTZs upon NaCl treatment. This work revealed a new role for plant BTZs through an evolutionarily conserved mechanism-PS-in the formation of condensates in response to salinity stress, thus providing new insights into the adaptive evolution of plant BTZs under abiotic stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339837PMC
http://dx.doi.org/10.1186/s12284-025-00830-3DOI Listing

Publication Analysis

Top Keywords

salinity stress
12
phase separation
8
plant btzs
8
stress
5
stress induces
4
induces phase
4
plant
4
separation plant
4
plant barentsz
4
barentsz form
4

Similar Publications

Boron toxicity and salinity are major abiotic stress factors that cause significant yield losses, particularly in arid and semi-arid regions. Hyperaccumulator plants, such as Puccinella distans (Jacq.) Parl.

View Article and Find Full Text PDF

Background: Soil salinization represents a critical global challenge to agricultural productivity, profoundly impacting crop yields and threatening food security. Plant salt-responsive is complex and dynamic, making it challenging to fully elucidate salt tolerance mechanism and leading to gaps in our understanding of how plants adapt to and mitigate salt stress.

Results: Here, we conduct high-resolution time-series transcriptomic and metabolomic profiling of the extremely salt-tolerant maize inbred line, HLZY, and the salt-sensitive elite line, JI853.

View Article and Find Full Text PDF

Integrative multi-omics and genomic prediction reveal genetic basis of early salt tolerance in alfalfa.

J Genet Genomics

September 2025

State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangd

The genetic basis of early-stage salt tolerance in alfalfa (Medicago sativa L.), a key factor limiting its productivity, remains poorly understand. To dissect this complex trait, we integrate genome-wide association study (GWAS) and transcriptomics (RNA-seq) from 176 accessions within a machine learning based genomic prediction framework.

View Article and Find Full Text PDF

Senolytic therapy increases replicative capacity by eliminating senescent endothelial cells.

Exp Gerontol

September 2025

Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Salk Institute for Biological Studies, La Jolla, CA, 92037, USA; Department of Molecular Biology, University of Utah, Salt Lake City, UT, USA; Department of Biochemistry, University of Utah, Salt Lake Ci

Aging is the greatest risk factor for cardiovascular diseases (CVD) and is characterized by inflammation, oxidative stress, and cellular senescence. Cellular senescence is a state of persistent cell cycle arrest triggered by stressors such as DNA damage and telomere attrition. Senescent endothelial cells (ECs) can impair vascular function and promote inflammation, thereby contributing to CVD progression.

View Article and Find Full Text PDF

This study evaluated the effects of dietary recovered frying soybean oil (RFSBO) and selenium nanoparticles (SeNPs) on growth performance, hepatic metabolism, intestinal morphology, and the expression of antioxidant, immune, and growth-related genes in juvenile Asian sea bass (Lates calcarifer, 41.5 ± 0.1 g) reared under high temperature (32-33 °C) and high salinity (38-40 ppt).

View Article and Find Full Text PDF