98%
921
2 minutes
20
Crop domestication has long been known to reshape rhizosphere microbial communities, yet research has focused disproprotionately on bacteria and fungal responses to crop domestication while neglecting protist communities. Protists, as key microbial predators regulating bacterial populations and thereby their functionalities, remain understudied in this context. Here, we investigate the influence of soybean domestication on both bacterial and protist communities, with a focus on the reorganization of ecological strategies, specifically generalists and specialists, within these microbiomes. We analyzed 270 rhizosphere samples from 27 domesticated and 63 wild soybean varieties. Domestication significantly altered community compositions of bacterial communities, with wild soybeans harboring higher proprotions of Pseudomonadota (71.4 %) and Bacillota (4.8 %), while domesticated soybeans exhibited an enrichment of Bacteroidota (11.0 %). Protist communities also diverged: wild soybeans were dominated by Cercozoa (58.2 %) and Gyrista (23.5 %), while domesticated plants had more Ciliophora (7.1 %) and Evosea (5.7 %). Domesticated soybeans hosted fewer generalist and specialist bacteria but more generalist protists, suggesting divergent microbial responses to domestication. Correlation analyses revealed that bacterial and protist generalists exhibited strong positive correlations with each other. At the same time, bacterial and protist specialists also showed positive correlations in wild soybeans-patterns that were largely absent in their domesticated counterparts. Functionally, wild soybeans supported more ureolytic and methylotrophic bacteria, while domesticated soybeans favored nitrate-respiration taxa. Notably, predatory protists in wild soybeans were significantly correlated with bacteria involved in carbon and nitrogen cycling, a key ecological relationship lost with domestication. These findings suggest that domestication exerts different selection pressures on bacteria and protists, disrupting potential relationships between bacterial and protist functional groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micres.2025.128295 | DOI Listing |
Water Res
August 2025
Key Laboratory of Environmental Aquatic Chemistry, State Key Laboratory of Regional Environment and Sustainability, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Sediment-associated microbial communities are pivotal in driving biogeochemical processes and serve as key indicators of ecosystem health and function. However, the ecological impact of protist predation on these microbial communities remains poorly understood. Here, sediment microcosms were established with varying concentrations of indigenous protists.
View Article and Find Full Text PDFmSphere
August 2025
Earlham Institute, Norwich Research Park, Norwich, United Kingdom.
Amoeboflagellates of the genus are free-living protists ubiquitously found in soil and freshwater habitats worldwide. They include the "brain-eating amoeba" , an opportunistic pathogen that causes primary amoebic meningoencephalitis, a rare but fatal infection of humans. Beyond their direct pathogenicity, protists can also act as environmental reservoirs for intracellular bacterial pathogens, such as spp.
View Article and Find Full Text PDFmSystems
August 2025
Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Ceske Budejovice, Czechia Republic.
Unlabelled: In aquatic microbial food webs, ciliates represent an important trophic link in the energy transfer from prokaryotes, algae, and heterotrophic nanoflagellates (HNFs) to higher trophic levels. However, the trophic role of abundant small ciliates (<20 µm) is not clearly understood. To unveil their trophic linkages, we conducted two experiments manipulating both top-down and bottom-up controlling factors, thus modulating the trophic cascading and bacterial prey availability for protists during contrasting spring and summer seasons with samples collected from a freshwater meso-eutrophic reservoir.
View Article and Find Full Text PDFISME J
August 2025
Department of Biology, Lund University, Lund, Sweden.
Anoxic and hypoxic environments serve as habitats for diverse microorganisms, including unicellular eukaryotes (protists) and prokaryotes. To thrive in low-oxygen environments, protists and prokaryotes often establish specialized metabolic cross-feeding associations, such as syntrophy, with other microorganisms. Previous studies show that the breviate protist Lenisia limosa engages in a mutualistic association with a denitrifying Arcobacter bacterium based on hydrogen exchange.
View Article and Find Full Text PDFMicrobiol Res
July 2025
Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Ch
Crop domestication has long been known to reshape rhizosphere microbial communities, yet research has focused disproprotionately on bacteria and fungal responses to crop domestication while neglecting protist communities. Protists, as key microbial predators regulating bacterial populations and thereby their functionalities, remain understudied in this context. Here, we investigate the influence of soybean domestication on both bacterial and protist communities, with a focus on the reorganization of ecological strategies, specifically generalists and specialists, within these microbiomes.
View Article and Find Full Text PDF