98%
921
2 minutes
20
The intracellular breakdown process known as autophagy occurs when cells experience adverse conditions, such as organelle damage, the presence of abnormal proteins, hypoxia stress, low energy levels, or nutritional deprivation. The autophagic process begins by forming autophagosomes, which then merge with lysosomes to recycle degraded materials. Autophagy functions in multiple ways to affect cancer development and treatment outcomes. Tumor cells with low autophagy levels may exhibit anti-tumor effects during cancer initiation because their connection to malignant transformation is possible. The promotion of autophagy appears beneficial for cancer prevention in this context. The survival of cancer cells through increased autophagy enables tumor growth in existing tumors by allowing them to overcome metabolic and treatment-related challenges. Research indicates that blocking autophagy through the use of drugs or genetic methods makes cancer cells more susceptible to chemotherapy, radiation, and targeted therapies, suggesting that inhibiting the autophagic system may be a promising approach to enhance treatment. Excessive autophagy activation could be a therapeutic approach to manage cancer cells that resist cell death. The successful treatment of cancer requires an understanding of autophagy's dual nature. This review examines potential therapeutic strategies for tumors by analyzing autophagy-related signaling pathways and the essential factors that influence cancer development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.seminoncol.2025.152397 | DOI Listing |
Adv Sci (Weinh)
September 2025
Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
Circulating tumor cells (CTCs) carry intact tumor molecular information, making them invaluable for personalized cancer monitoring. However, conventional capture methods, relying on passive diffusion, suffer from low efficiency due to insufficient collision frequency, severely limiting clinical utility. Herein, a magnetic micromotor-functionalized DNA-array hunter (MMDA hunter) is developed by integrating enzyme-propelled micromotors, magnetic nanoparticles, and nucleic acid aptamers into distinct functional partitions of a DNA tile self-assembly structure.
View Article and Find Full Text PDFJ Org Chem
September 2025
Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. of China.
A Mg(OTf)-catalyzed asymmetric Michael addition/cyclization cascade reaction between 3-isothiocyanato oxindoles and 2-arylidene-1,3-indanediones has been developed. This transformation provides an efficient and concise approach to biologically important bispiro[indanedione-oxindole-pyrrolidinyl]s under mild conditions in good to excellent yields (70-99% yields) with moderate to good stereoselectivities (up to 99% and >95:5 d.r.
View Article and Find Full Text PDFNanoscale
September 2025
School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India.
Early-stage cancer diagnosis is considered a grand challenge, and even though advanced analytical assays have been established through molecular biology techniques, there are still clinical limitations. For example, low concentration of target biomarkers at early stages of cancer, background values from the healthy cells, individual variation, and factors like DNA mutations, remain the limiting factor in early cancer detection. Volatile organic compound (VOC) biomarkers in exhaled breath are produced during cancer cell metabolism, and therefore may present a promising way to diagnose cancer at the early stage since they can be detected both rapidly and non-invasively.
View Article and Find Full Text PDFClin Exp Immunol
September 2025
Rheumatology Department, Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1184, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (APHP), CEA , FHU CARE, Le Kremlin Bicêtre, France.
Introduction: Immunosenescence remodels immune functions and was first described with aging. It is present in 25% of cancer patients but has also been described in patients with Immune-mediated inflammatory diseases (IMIDs). This study aims at quantifying cells exhibiting a phenotype of senescence in CD4+ (T4sen) and CD8+ (T8sen) T cells, analyzing its potential drivers and the effect of anti-TNF treatment in a prospective cohort of patients with rheumatoid arthritis (RA), spondyloarthritis (SpA) and Sjögren disease (SjD).
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Rehabilitation Medicine, Second Xiangya Hospital, Central South University, Changsha 410011.
Objectives: Osteoarthritis (OA) is one of the most common chronic degenerative diseases, with chondrocyte apoptosis and extracellular matrix (ECM) degradation as the major pathological changes. The mechanical stimulation can attenuate chondrocyte apoptosis and promote ECM synthesis, but the underlying molecular mechanisms remain unclear. This study aims to investigate the role of primary cilia (PC) in mediating the effects of mechanical stimulation on OA progression.
View Article and Find Full Text PDF