98%
921
2 minutes
20
Background: Polycystic ovary syndrome (PCOS) pathogenesis involves dysregulated granulosa cell function, but molecular mechanisms remain unclear.
Methods: High-throughput RNA sequencing was performed on ovarian granulosa cells from 6 PCOS patients and 3 controls to identify differentially expressed mRNAs. Bioinformatics analyses including ceRNA network construction predicted the KRTAP5-AS1/miR-199b-5p/CYP19A1 regulatory axis, which was experimentally validated through dual-luciferase reporter assays. qRT-PCR confirmed the expression patterns of these molecules in expanded clinical cohorts (38 PCOS vs. 30 controls), with Pearson correlation analysis examining relationships between gene expression and clinical parameters. Using the KGN granulosa cell line, functional studies included: (1) ELISA quantification of estradiol production; (2) proliferation assessment via CCK-8 and colony formation assays; and (3) apoptosis evaluation by flow cytometry and Bax/Bcl-2 protein analysis. These experiments were performed following both gain-of-function (overexpression) and loss-of-function (shRNA knockdown) manipulations of KRTAP5-AS1 and miR-199b-5p.
Results: Through RNA sequencing of ovarian granulosa cells from 6 PCOS patients and 3 controls, we identified CYP19A1 as significantly upregulated in PCOS. Expanded validation in 38 PCOS vs. 30 controls confirmed elevated CYP19A1 and reduced miR-199b-5p in PCOS, with KRTAP5-AS1 showing negative correlation to miR-199b-5p and positive to CYP19A1. Clinically, CYP19A1 upregulation correlated with poor embryo quality, elevated testosterone, AMH, BMI, and infertility duration, while miR-199b-5p levels associated positively with embryo quality. In KGN granulosa cells, miR-199b-5p overexpression suppressed CYP19A1 expression and estradiol synthesis, whereas KRTAP5-AS1 overexpression alleviated this suppression via competitive miR-199b-5p binding. Functional studies demonstrated that miR-199b-5p overexpression combined with KRTAP5-AS1 knockdown inhibited proliferation, promoted apoptosis, and reduced estradiol production, while opposite manipulations reversed these effects.
Conclusions: Our findings reveal that KRTAP5-AS1 modulates granulosa cell dysfunction in PCOS through the miR-199b-5p/CYP19A1 axis, highlighting miR-199b-5p as a potential therapeutic target for PCOS-related ovarian dysfunction and endocrine abnormalities.
Clinical Trial Number: Not applicable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12333301 | PMC |
http://dx.doi.org/10.1186/s13048-025-01746-8 | DOI Listing |
J Cell Physiol
September 2025
Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
Ovarian granulosa cells (GCs) are pivotal for follicular homeostasis, and their dysregulated apoptosis drives age-related ovarian aging. The Hippo signaling pathway, modulated by long noncoding RNAs (lncRNAs), is implicated in regulating GCs proliferation and ovarian aging. TEAD2 (Transcriptional Enhanced Associate Domain 2), a key downstream transcription factor of the Hippo signaling pathway, plays a critical role in regulating cell proliferation, apoptosis, and embryonic stem cell self-renewal.
View Article and Find Full Text PDFVet World
July 2025
Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand.
Background And Aim: Granulosa cells (GCs) are crucial mediators of follicular development and oocyte competence in goats, with their gene expression profiles serving as potential biomarkers of fertility. However, the lack of a standardized, quantifiable method to assess GC quality using transcriptomic data has limited the translation of such findings into reproductive applications. This study aimed to develop a hybrid deep learning model integrating one-dimensional convolutional neural networks (1DCNNs) and gated recurrent units (GRUs) to classify GCs as fertility-supporting (FS) or non-fertility-supporting (NFS) using single-cell RNA sequencing (scRNA-seq) data.
View Article and Find Full Text PDFBiol Trace Elem Res
September 2025
State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
Ferroptosis is a form of iron-regulated cell death that plays a critical role in various aspects of female reproductive system development. These processes include the normal estrous cycle, ovarian formation, follicular maturation, ovulation, and pregnancy, all of which are essential for maintaining reproductive health in female animals. However, excessive iron leads to the accumulation of reactive oxygen species within cells, disrupting intracellular redox balance, inducing mitophagy, membrane rupture, and lipid peroxidation, which can damage tissues and cells, ultimately resulting in ferroptosis.
View Article and Find Full Text PDFAm J Reprod Immunol
September 2025
Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Turkey.