Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In urethral damage/stricture prevention, open and harsh urethral microenvironments and isotropic compression and swelling properties of exogenous implants render urethral repair intractable. Here a dynamically urethra-adapted and obligations-oriented trilayer hydrogel was engineered to integrate scarless urethral repair. Therein, the diethylacrylamide-hydroxyethylacrylamide (HEAm) (D-H) hydrogel layer featuring high anti-fouling performance prevent adhesions of bacterial and blood cells, and its poor swelling avoids urethra occlusion. The upper swellable and verteporfin (VP)-loaded N,N'-methylenebisacrylamide-poly (N-isopropylacrylamide) (BP) layer encourages urethra regeneration through expediting cell migration and proliferation. The rigid and water-resistant Zein middle layer opposes urine voiding-arised BP shedding, urethral diastole/contraction, inward BP swelling-arised urethra occlusion and urine permeation. Importantly, systematic proteomic and genomic analysis reveals that such hydrogel scaffolds expedite epithelial & vascular regenerations, attenuate tight cell junction, oppose inflammation microenvironment and regulate extracellular matrix secretion and metabolism to realize integrated urethral repair. The microenvironment-adaptable design concepts provide reliable rationales to engineer urethral regeneration scaffolds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334618 | PMC |
http://dx.doi.org/10.1038/s41467-025-62851-2 | DOI Listing |