Effector-Triggered Immunity Is a Key Component of Nonhost Resistance in Nicotiana benthamiana against the Rice Blast Pathogen Magnaporthe oryzae.

Plant Pathol J

Horticultural Biotechnology, Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Magnaporthe oryzae is the causal agent of rice blast disease, a major threat to global food security. Although M. oryzae infects a broad range of monocotyledonous plants, it fails to colonize dicot species such as Nicotiana benthamiana, offering a useful system to investigate nonhost resistance (NHR). In this study, we characterized the immune responses of N. benthamiana to M. oryzae by profiling defense-related gene expression, analyzing fungal invasion, and functionally dissecting key immune components. Time-course expression analyses revealed sustained upregulation of NbBAK1, NbEAS, NbWRKY22, and NbPR1, alongside dynamic regulation of NbCYP71D20 and NbSGT1. Virus-induced gene silencing demonstrated that silencing of NbSGT1, but not NbEAS or NbBAK1, significantly enhanced fungal colonization. Furthermore, salicylic acid (SA)-deficient NahG plants exhibited increased susceptibility, suggesting that SA and SGT1-dependent immunity synergistically contribute to NHR. Visualization of infection using a GFP-expressing fungal strain confirmed that suppression of SGT1 and SA signaling facilitated hyphal expansion into adjacent host cells. High-throughput screening of 179 M. oryzae candidate effectors revealed that 70 induced hypersensitive response-like cell death in N. benthamiana, a response that was abrogated by NbSGT1 silencing. These findings collectively demonstrate that SA signaling and SGT1-dependent effector-triggered immunity are critical barriers against M. oryzae invasion and highlight the potential of nonhost immune components as resources for engineering durable resistance in crops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12332412PMC
http://dx.doi.org/10.5423/PPJ.OA.02.2025.0024DOI Listing

Publication Analysis

Top Keywords

effector-triggered immunity
8
nonhost resistance
8
nicotiana benthamiana
8
rice blast
8
magnaporthe oryzae
8
immune components
8
oryzae
6
immunity key
4
key component
4
component nonhost
4

Similar Publications

Zika virus (ZIKV) is a mosquito-borne flavivirus causing a major epidemic in the Americas in 2015. Dendritic cells (DCs) are leukocytes with key antiviral functions, but their role in ZIKV infection remains under investigation. While most studies have focused on the monocyte-derived subtype of DCs, less is known about conventional dendritic cells (cDCs), essential for the orchestration of antiviral adaptive immunity.

View Article and Find Full Text PDF

Introduction: Galectin-9 is a β-galactoside-binding lectin that functions as a critical pattern recognition receptor (PRR) in the host immune system, initiating immune defense responses by recognizing and binding to pathogen-associated molecular patterns (PAMPs) on the surface of microorganisms. In this study, we identified and characterized a novel galectin-9 cDNA, designated CcGal-9, from Yellow River carp ().

Methods: The full-length CcGal-9 cDNA was cloned and sequenced, and its structural features were analyzed.

View Article and Find Full Text PDF

Objective: Enterovirus 71 (EV-A71) is a major pathogen of severe hand, foot and mouth disease (HFMD) in children, but the mechanism by which it develops into severe HFMD remains unclear, especially the role of macrophage-mediated immune dysregulation.

Methods: Bioinformatics tools were utilized to analyze the transcriptome sequencing results of peripheral blood monocytes (PBMCs) infected with different titers of EV-A71 at various time points. Single-cell sequencing technology was used to sequence obtained PBMCs from a severe HFMD patient due to EV-A71 and a healthy control.

View Article and Find Full Text PDF

Introduction: Toll-like receptors (TLRs) play key role in cancer immunotherapy by harnessing the immune system's natural response to target and fight tumors. Among various TLRs, mainly TLR3, TLR4, TLR7, TLR8, and TLR9, have been investigated for their ability to modulate immune responses, improve tumor recognition, and enhance the efficacy of conventional treatments like chemotherapy and radiotherapy.

Areas Covered: This review provides in-depth analysis of patents filed from 2014 to 2024 that explored TLR-targeting strategies in cancer therapy.

View Article and Find Full Text PDF

Autophagy and Bacterial infections.

Autophagy Rep

September 2025

Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.

Autophagy is an evolutionarily conserved cellular process that is prominent during bacterial infections. In this review article, we discuss how direct pathogen clearance via xenophagy and regulation of inflammatory products represent dual functions of autophagy that coordinate an effective antimicrobial response. We detail the molecular mechanisms of xenophagy, including signals that indicate the presence of an intracellular pathogen and autophagy receptor-mediated cargo targeting, while highlighting pathogen counterstrategies, such as bacterial effector proteins that inhibit autophagy initiation or exploit autophagic membranes for replication.

View Article and Find Full Text PDF