Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The biomolecular motor FF-ATPase-embedded chromatophore, a biomolecular motor loaded into a lipid bilayer of chromatophores derived from biocells demonstrates significant potential for applications in various biomedical fields, such as targeted drug delivery within tumor microenvironments, biological tissue penetration, and biosensor detection. However, conventional purification strategies relying on gradient/ultracentrifugation remain hampered by prohibitive costs, technical complexity, and scalability constraints, critically limiting their biomedical translation. Here, we present a paradigm-shifting approach utilizing titanium dioxide (TiO) microspheres for efficient chromatophore isolation via Lewis acid-base interactions. Through constructing chromatophore-TiO complexes, we systematically investigated adsorption mechanisms using isotherm modeling and FTIR spectroscopy, revealing that 7.11%-8.84% of interfacial interactions originated from physisorption. This novel strategy achieved 93.3% ± 3.21% separation efficiency and 90.7% ± 5.77% recovery rates-surpassing conventional centrifugation by 2.1-fold in operational efficiency while maintaining chromatophore integrity. Crucially, the preserved bio functionality of FoF-ATPase post-separation was validated through sustained proton gradient-driven ATP (adenosine triphosphate) synthesis. Our findings establish TiO-based adsorption as a robust alternative for biomotor purification and elucidate fundamental principles governing nanobiointerfaces between inorganic matrices and membrane-embedded molecular machines. This work provides a universal platform adaptable for diverse biofilm-encapsulated agents, bridging critical gaps between laboratory-scale development and clinical-scale production of advanced bionanodevices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.70093DOI Listing

Publication Analysis

Top Keywords

titanium dioxide
8
biomolecular motor
8
adsorption separation
4
separation biomolecular
4
biomolecular motors
4
motors ff-atpase-embedded
4
ff-atpase-embedded chromatophores
4
chromatophores titanium
4
dioxide microsphere
4
microsphere biomolecular
4

Similar Publications

Titanium dioxide nanoparticles as a promising tool for efficient separation of trace DNA via phosphate-mediated desorption.

Mikrochim Acta

September 2025

Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.

We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.

View Article and Find Full Text PDF

Titanium dioxide (TiO) thin films were deposited on glass substrates under HV conditions at room temperature by the physical vapor deposition method. Produced titanium thin films were post-annealed at 573 K at different oxygen flows (0, 9 and 23 cm/s). The influence of different oxygen flows on nano-structure, crystallography, and optical parameters of TiO films was investigated by XRD, AFM, and spectrophotometer in the UV-VIS wavelength range.

View Article and Find Full Text PDF

Achieving a crack-free, high-surface-area photoanode is essential for maximizing the efficiency of dye-sensitized solar cells (DSSCs). In this work, rutile titanium dioxide (rTiO) nanoflowers were synthesized hydrothermally and then conformally coated with copper(I) oxide (CuO) by RF magnetron sputtering to seal pre-existing cracks and to create a nanothorn surface favorable for dye adsorption. Systematic control of the sputtering time identified 60 min as optimal condition, yielding a photoanode thickness of about 6.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles (TiO-NPs) are used in the production of various industrial and commercial products and reported to cause neurotoxicity in Sprague Dawley rats. Fortunellin (FRN) is a potent flavonoid with diverse biological properties. This research experiment was performed to explore the protective role FRN against TiO-NPs induced brain damage.

View Article and Find Full Text PDF

The increasing use of titanium dioxide (TiO) nanoparticles (NPs) has raised concerns related to their environmental accumulation and the associated ecological risks. Understanding the key biomolecular responses of TiO₂ NP-tolerant organisms like Physarum flavicomum GD217 is essential for combating the pollution of and exposure to these NPs. In this study, we employed multi-omics approaches combined with molecular biology techniques to investigate the stress responses of GD217 to mixed-phase TiO₂ NPs (M-TiO₂ NPs).

View Article and Find Full Text PDF