98%
921
2 minutes
20
This paper presents a novel terahertz (THz) graphene-based tunable metamaterial that operates as a frequency-multiplexed logic device. The structure consists of a gold layer, a dielectric substrate, and an array of graphene resonators formed by two circular ring resonators per unit cell. The metamaterial is simulated and designed in CST Software. The equivalent circuit model (ECM) for the metamaterial is obtained using MATLAB code. Logical input values are set by adjusting the Fermi levels of graphene-based circular resonators, while output logic states are determined by analyzing the reflection spectrum. The proposed device operates within the THz range, enabling the realization of OR, XNOR, and NAND logic gates at three distinct frequencies. Additionally, the working frequencies of these gates can be tuned by modifying the graphene's Fermi level. The highest extinction ratios (ERs) achieved for the OR, XNOR, and NAND gates are 36.93, 65.66, and 22.38 dB, respectively. Owing to its simple design and versatility, this metamaterial shows strong potential for use in THz digital systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12331931 | PMC |
http://dx.doi.org/10.1038/s41598-025-14311-6 | DOI Listing |
Adv Mater
September 2025
State Key Laboratory of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing, 100029, China.
The monolayer transistor, where the semiconductor layer is a single molecular layer, offers an ideal platform for exploring transport mechanisms both theoretically and experimentally by eliminating the influence of spatially correlated microstructure. However, the structure-property relations in polymer monolayers remain poorly understood, leading to low transistor performance to date. Herein, a self-confinement effect is demonstrated in the polymer monolayer with nanofibrillar microstructures and edge-on orientation, as characterized by the 4D scanning confocal electron diffraction method.
View Article and Find Full Text PDFAdv Mater
September 2025
Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
The orientation of MXene flakes has received increasing research attention as it plays a critical role in determining the performance of MXene-based assemblies. Engineering MXene flakes into horizontal or vertical orientations can offer distinct advantages such as higher electrical conductivity, higher mechanical strength, and more efficient ion/molecule transport across the flakes. However, the benefits of horizontal and vertical orientations are mutually exclusive, and both of them possess structural symmetry that restricts their ability for stimuli-responsive deformation.
View Article and Find Full Text PDFMater Today Bio
October 2025
Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
Clinically, even in patients diagnosed with non-obstructive azoospermia, spermatogenesis may be present in some seminiferous tubules, which gives the patient hope of having biological offspring of his own. However, there is still a blank for high-precision detection technologies to support accurate diagnosis and effective treatment. In this work, we successfully developed a minimally invasive fine needle detection memristive device that features a structure composed of Ag/CH-MnO/FTO by utilizes the organic-inorganic heterojunction as functional layer.
View Article and Find Full Text PDFMater Horiz
September 2025
Faculty of Science, School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
Organic electrochemical transistors (OECTs) continue to be the subject of much detailed and systematic study, being suitable for a diverse range of applications including bioelectronics, sensors, and neuromorphic computing. OECTs conventionally use a liquid electrolyte, and this architecture is well suited for sensing or bio-interfacing applications where biofluids or liquid samples can be used directly as the electrolyte. A more recent trend is solid-state OECTs, where a solid or semi-solid electrolyte such as an ion gel, hydrogel or polyelectrolyte replaces the liquid component for an all-solid-state device.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Physics, National University of Singapore, Singapore 117551, Singapore.
Two-dimensional ferroelectrics with large out-of-plane polarization (OOP) are promising for the design of low-power memory and logic devices, but their experimental realization remains limited due to the scarcity of homobilayers and the complexity of heterobilayers. Here, we perform high-throughput screening of 24,960 configurations and identify 43 semiconducting heterobilayer ferroelectrics with an OOP exceeding the experimentally reported value in MoS/WS while maintaining sliding barriers below 100 meV/f.u.
View Article and Find Full Text PDF