Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: To address the challenges of low surgical precision and poor consistency in focused ultrasound ablation surgery (FUAS) for uterine fibroids, which are often caused by variations in clinical experience and operator fatigue, this study aims to develop an intelligent three-dimensional (3D) visualization and navigation system by integrating magnetic resonance imaging (MRI) with real-time ultrasound (US) imaging, thereby improving the accuracy and efficiency of uterine fibroid surgery.

Methods: MRI and US images from 638 patients were annotated by experienced clinicians. The nnU-Net algorithm was used for preoperative segmentation and 3D reconstruction of MRI images to provide detailed visualization of fibroid morphology. The YOLACT model was applied to achieve rapid delineation of the uterus and key anatomical structures in real-time US images. To enhance the accuracy of lesion localization and navigation, the Iterative Closest Point (ICP) algorithm was employed for the registration of preoperative MRI with intraoperative US images.

Results And Discussion: Experimental results demonstrated that the system achieved a Dice Similarity Coefficient (DSC) exceeding 90% for the segmentation and identification of anatomical structures such as the uterus and fibroids. The YOLACT model achieved an accuracy greater than 95% in identifying key structures in real-time US images. In 90% of the cases, the system enabled efficient and precise tracking; however, approximately 5% of the cases required manual adjustment due to discrepancies between patient anatomy and preoperative MRI data. The proposed intelligent navigation system, based on MRI-US image fusion, offers an efficient and automated solution for FUAS in treating uterine fibroids, significantly improving surgical precision and operational efficiency. This system demonstrates strong clinical applicability. Future research will focus on enhancing the adaptability of the system, particularly in addressing challenges such as significant tissue deformation and occlusion, to improve its robustness and applicability in complex clinical scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12325360PMC
http://dx.doi.org/10.3389/frai.2025.1613960DOI Listing

Publication Analysis

Top Keywords

three-dimensional visualization
8
visualization navigation
8
uterine fibroid
8
image fusion
8
surgical precision
8
uterine fibroids
8
navigation system
8
mri images
8
yolact model
8
anatomical structures
8

Similar Publications

Aquatic microorganisms typically inhabit a heterogeneous resource landscape, composed of localized and transient patches. To effectively exploit these resources, they have evolved a wide range of feeding strategies that combine chemotactic motility with active feeding flows. However, there is a notable lack of experimental studies that examine how these active flows shape resource fields to optimize feeding.

View Article and Find Full Text PDF

Segmentectomies Made Easy series: robotic-assisted right S1 and S2 segmentectomy.

Multimed Man Cardiothorac Surg

September 2025

Department of Thoracic Surgery, New Cross Hospital, Royal Wolverhampton NHS Trust, Wolverhampton, UK

Three-dimensional (3D) guided robotic-assisted thoracic surgery is increasingly recognized as the pioneering approach for the most complex of pulmonary resections, offering high-definition 3D visualization, enhanced instrument augmentation and tremor-free tissue articulation. Compared with open thoracotomy, the robotic platform is associated with reduced peri-operative morbidity, shorter hospital admissions and faster patient recovery. However, sublobar resections such as segmentectomies remain anatomically and technically demanding, particularly in the context of resecting multiple segments, as showcased in this right S1 and S2 segmentectomy.

View Article and Find Full Text PDF

Segmentectomies Made Easy series: robotic-assisted left S1 and S2 segmentectomy.

Multimed Man Cardiothorac Surg

September 2025

Department of Cardiothoracic Surgery, St George’s Hospital, St George's University Hospitals NHS Foundation Trust, London, UK

Three-dimensional (3D) guided robotic-assisted thoracic surgery is increasingly recognized as a leading technique for undertaking the most complex pulmonary resections, providing high-definition 3D visualization, advanced instrument control and tremor-free tissue handling. Compared with open thoracotomy, the robotic platform offers reduced peri-operative complications, shorter hospital stays and faster patient recovery. Nevertheless, sublobar resections, such as segmentectomies, remain both anatomically intricate and technically challenging, particularly when resecting multiple segments, as in this left S1 and S2 segmentectomy.

View Article and Find Full Text PDF

Fully Endoscopic Microvascular Decompression for Hemifacial Spasm Using 2-Dimensional/3-Dimensional Endoscopy: Clinical Analysis of 204 Cases.

Oper Neurosurg

September 2025

Department of Neurosurgery and the Training Base of Neuroendoscopic Physicians under the Chinese Medical Doctor Association, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.

Background And Objectives: Microvascular decompression (MVD) for hemifacial spasm (HFS) is commonly conducted under a microscope. We report a large series of fully endoscopic MVDs for HFS and describe our initial experience with 3-dimensional (3D) endoscopy.

Methods: Clinical data of 204 patients with HFS who underwent fully endoscopic MVD using 2-dimensional (2D) and 3D endoscopy (191 and 13 patients, respectively) from July 2017 to October 2024 were retrospectively analyzed.

View Article and Find Full Text PDF

Aim: To assess the incremental value of real-time three-dimensional (3D) transesophageal echocardiography (TEE) in visualizing tricuspid valve (TV) anatomy for procedural planning and guidance of transcatheter edge-to-edge repair (TEER) in cases of severe tricuspid regurgitation (TR).

Materials And Methods: An observational study was conducted on 54 patients with severe TR. The visualization of the TV leaflets during systole was graded semiquantitatively using predefined criteria: 0 points-no visible leaflet border or tissue; 1.

View Article and Find Full Text PDF