Similar Publications

Engineering Covalent and Noncovalent Interface Synergy in MXenes for Ultralong-life and Efficient Energy Storage.

Angew Chem Int Ed Engl

September 2025

Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P.R. China.

MXenes serve as pivotal candidates for pseudocapacitive energy storage owing to sound proton/electron-transport capability and tunable topology. However, the metastable surface terminal properties and the progressive oxidation leads to drastic capacity fading, posing significant challenges for sustainable energy applications. Here, with the aramid nanofiber as the interface mediator, we engineer the thermal reconstruction of MXenes to synergistically introduce interfacial covalent and noncovalent interactions, resulting in a high specific capacitance of 531.

View Article and Find Full Text PDF

The concept of the circular bioeconomy is a carbon neutral, sustainable system with zero waste. One vision for such an economy is based upon lignocellulosic biomass. This lignocellulosic circular bioeconomy requires CO absorption from biomass growth and the efficient deconstruction of recalcitrant biomass into solubilized and fractionated biopolymers which are then used as precursors for the sustainable production of high-quality liquid fuels, chemical bioproducts and bio-based materials.

View Article and Find Full Text PDF

Bifunctional integration of indoor organic photovoltaics (OPVs) and photodetectors (OPDs) faces fundamental challenges because of incompatible interfacial thermodynamics: indoor OPVs require unimpeded charge extraction under low-light conditions (200-1000 lx), whereas OPDs require stringent suppression of noise current. Conventional hole transport layers (HTLs) fail to satisfy these opposing charge-dynamic requirements concurrently with commercial practicality (large-area uniformity, photostability, and cost-effective manufacturability). This study introduces benzene-phosphonic acid (BPA)-a minimalist self-assembled monolayer (SAM)-based HTL with a benzene core and phosphonic acid anchoring group-enabling cost-effective synthesis and excellent ITO interfacial properties such as energy alignment, uniform monolayer, and stability.

View Article and Find Full Text PDF

Context: High-nitrogen polycyclic compounds have become a research hotspot in the design of new energetic molecules due to their dense nitrogen content, high positive enthalpy of formation, and good structural stability. In particular, the fused structures of triazole and triazine heterocycles can not only enhance energy output but also possess excellent thermal stability. This study focuses on three triazolotriazine energetic compounds: 3,7-dinitro-[1,2,4]triazolo[5,1-c][1,2,4]triazin-4-amine (TTX), 7-nitro-3-(1H-tetrazol-5-yl)-[1,2,4]triazolo[5,1-c][1,2,4]triazin-4-amine (compound 1), and 3,3'-dinitro-[7,7'-bi[1,2,4]triazolo[5,1-c][1,2,4]triazine]-4,4'-diamine (compound 2).

View Article and Find Full Text PDF

Comparative radiation dose analysis in pediatric high-pitch cardiac CTA using photon-counting versus energy-integrating detector CT.

Pediatr Radiol

September 2025

Department of Radiology, University of Colorado School of Medicine/Department of Pediatric Radiology, Children's Hospital Colorado, 13123 East 16th Avenue, Box 125, Aurora, 80045, Colorado, USA.

Background: Previous studies have shown improved image quality in pediatric cardiac imaging using photon-counting detector CT (PCDCT). However, these studies did not evaluate image quality and radiation dose when utilizing the full spectral capabilities of PCDCT scanners. The full spectral capability of PCDCT scanners allows the generation of the entire array of mono-energetic reconstructions, virtual non-contrast (VNC) images, and iodine maps, which have potential advantages in evaluating complex congenital heart disease.

View Article and Find Full Text PDF