Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Screening of salt-tolerant soybean varieties, identification of key genes and verification of gene function through salt-tolerance assessment, transcriptome profiling and soybean hairy root transformation experiments. Screening and breeding of salt-tolerant soybean varieties is essential to increase the area and yield of soybean on saline-alkaline soils. In this study, 81 soybean varieties were systematically assessed for salt tolerance during both germination and early seedling development stages. Based on their salt-tolerance capacity, the varieties were categorized into four distinct groups. Physiological analysis revealed that the highly salt-tolerant genotype effectively restricted ions accumulation in roots through compartmentalization mechanisms, while subsequent biochemical assays demonstrated its superior antioxidant enzyme activity (particularly SOD and CAT), thereby mitigating membrane system damage under NaCl stress. Comparative transcriptome profiling between salt-tolerant and sensitive cultivars identified 3588 differentially expressed genes (DEGs) predominantly involved in ion transport, oxidative stress, and photosynthesis. Functional validation through preliminary experiments using the soybean hairy root transformation method highlighted the potential regulatory roles of the candidate gene (Gm10G262850v4) in salt stress responses. These findings provide insights into the mechanisms of soybean salt tolerance and facilitate the breeding of salt-tolerant soybean varieties.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-025-03574-yDOI Listing

Publication Analysis

Top Keywords

salt-tolerant soybean
16
soybean varieties
16
soybean
9
screening salt-tolerant
8
transcriptome profiling
8
soybean hairy
8
hairy root
8
root transformation
8
breeding salt-tolerant
8
salt tolerance
8

Similar Publications

Plants, including halophytes (salt-tolerant) and glycophytes (salt-sensitive), have developed diverse molecular mechanisms and morphological adaptations to survive in saline environments. The cellular components and molecular processes for salinity sensing and stress tolerance have been extensively identified in glycophytes, but not so with halophytes. Salinity sensing requires the perception of a major soil salinity contributor, that is, sodium ions (Na).

View Article and Find Full Text PDF

A comparative transcriptomic analysis provides insights into molecular mechanisms driving salt tolerance in soybean.

Sci Rep

August 2025

School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA.

Salinity limits the productivity of many crops, including soybean. This study investigated the molecular mechanisms of salt tolerance by comparing the transcriptomic responses to salt stress between a recently identified salt-tolerant (PI 561363) and a salt-sensitive genotype (PI 601984). Leaf tissues were collected at 0 h, 6 h, 24 h, and 48 h after exposure to 150 mM NaCl for RNA sequencing.

View Article and Find Full Text PDF

Salinized soil can significantly hinder soybean growth, leading to a reduction in overall yield. To address this issue, identifying key genes related to salt tolerance in soybeans is essential for improving their resistance to salinity and ensuring sustainable development of soybean production. While current research predominantly focuses on salt tolerance during the seedling stage, there is still a lack of comprehensive studies on the genes involved in salt tolerance during the germination stage.

View Article and Find Full Text PDF

Screening of salt-tolerant soybean varieties, identification of key genes and verification of gene function through salt-tolerance assessment, transcriptome profiling and soybean hairy root transformation experiments. Screening and breeding of salt-tolerant soybean varieties is essential to increase the area and yield of soybean on saline-alkaline soils. In this study, 81 soybean varieties were systematically assessed for salt tolerance during both germination and early seedling development stages.

View Article and Find Full Text PDF

Halophyte-based intercropping alleviates salt stress in glycophytes by desalinization. However, the role of root interactions, which are key to system sustainability, is often overlooked. This study evaluated soybean (Glycine max) salt tolerance when intercropped with Suaeda salsa, a halophyte with high salt tolerance, under different root interaction modes: plastic sheet separation (PL), nylon mesh separation (NL), and no separation (NS).

View Article and Find Full Text PDF