98%
921
2 minutes
20
Biochar (BC) application is widely recognized as a promising strategy for enhancing soil fertility; however, its lasting effects on microbial communities in aeolian sandy soils of semi-arid regions remain poorly understood. To fill this knowledge gap, we conducted a field experiment to evaluate long-term changes in soil properties and microbial community structure in a buckwheat cropping system, 4 years after a single application of biochar (BC) at rates of 0 (BC0), 20 (BC1), 40 (BC2), and 60 (BC3) Mg ha in aeolian sandy soils of Inner Mongolia, China. Results revealed significant improvements in soil pH, moisture content, organic carbon (SOC), and available nutrients, as well as microbial biomass and enzyme activity, particularly at higher BC application rates (BC2 and BC3). SOC increased by 9.42% (BC2) and 14.13% (BC3). BC application altered microbial community composition, with minimal effects on bacterial diversity but reduced fungal diversity. Enhanced soil C and N cycling was linked to shifts in key microbial genera, while relative abundances of potential pathogens such as and declined by up to 58 and 77%, respectively. Mantel tests confirmed significant correlations between shifts in microbial diversity and community composition and changes in soil properties, with particularly strong associations for fungal diversity related to SOC ( = 0.50, < 0.001) and microbial biomass carbon (SMC; = 0.43, < 0.001). Redundancy analysis further revealed that bacterial communities were significantly associated ( < 0.05) with pH, microbial biomass nitrogen (SMN), and invertase activity, while fungal communities were linked to pH, microbial biomass phosphorus (SMP), and urease activity. This study underscores the potential of biochar to enhance soil health by improving soil fertility, reshaping microbial community composition, and suppressing soil-borne pathogens, particularly at higher application rates. These findings provide valuable insights for the reclamation of degraded sandy soils in semi-arid regions on a global scale.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12307304 | PMC |
http://dx.doi.org/10.3389/fmicb.2025.1619992 | DOI Listing |
Int J Surg
September 2025
Department of Cardiovascular Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University (Cardiovascular Diseases Research Institute of Panyu District), Guangdong, China.
Curr Atheroscler Rep
September 2025
Division of Gastroenterology and Hepatology, Lynda K. and David M. Underwood Center for Digestive Health, Houston Methodist Hospital, Houston, TX, USA.
Purpose Of Review: This review aims to characterize the known cardiovascular (CV) manifestations associated with inflammatory bowel disease (IBD) and the underlying mechanisms driving these associations.
Recent Findings: Gut dysbiosis, a hallmark of patients with IBD, can result in both local and systemic inflammation, thereby potentially increasing the risk of cardiovascular disease (CVD) in the IBD population. Micronutrient deficiencies, anemia, and sarcopenia independently increase the risk of CVD and are frequent comorbidities of patients with IBD.
Food Funct
September 2025
College of Food Science, Southwest University, Chongqing, 400715, China.
Bifidobacteria are naturally found in the human gut and quickly establish dominance shortly after birth, playing a crucial role in the development and stability of the infant gut microbiota. A growing body of research suggests that host and environmental factors shape the colonization and the relative abundance of bifidobacteria in the infant gut during early life. Understanding the factors that influence bifidobacterial colonization and maintaining normal colonization levels are keys to ensuring gut health.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Medical Microbiology and Parasitology, Faculty of Medicine, Selangor Branch, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, 47000, Selangor, Malaysia.
Streptococcus bovis is an opportunistic bacterium consistently associated with colorectal cancer (CRC). This article reviews previous experimental evidence that has successfully demonstrated the role of S. bovis species in the context of CRC.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA.
Unlabelled: (SA) colonizes most mammals but also represents a danger in clinical settings because it evolves resistance against antibiotics, and SA infections represent a leading cause of death worldwide. SA nasal carriage provides the bacterial reservoir for opportunistic infection because clinical strains often match the patient's own nasally carried strain. The global SA carriage rate is typically reported as 25%-30% after sampling subjects once or twice and defining carrier status using culture-based methods.
View Article and Find Full Text PDF