98%
921
2 minutes
20
Background: Nitrite is one of the primary pollutants in high-density aquaculture systems, and may cause various toxic effects (e.g., oxidative damage, metabolic and immune dysregulation, histological inflammation, etc.) on economically important aquaculture species, such as echinoderms, crustaceans and fish. Nitrite can also disrupt the intestinal function and microbiota in some fish and amphibians. However, intestinal physiological and microbial responses of cultured turtles under nitrite stress were rarely explored.
Method: Twenty Mauremys reevesii juveniles were exposed to different nitrite levels and fed with a commercial diet. Their intestinal content samples were analyzed for microbial diversity and composition.
Results: Nitrite exposure reduced intestinal microbial diversity, with lower α-diversity values in higher-concentration exposed turtles. It also changed the microbial composition. After exposure, the abundances of Bacteroidetes and Firmicutes decreased, but that of Proteobacteria increased at the phylum level. Similarly, abundances of some potentially beneficial bacterial genera, e.g., Prevotella_1, Christensenellaceae_R-7, Muribaculaceae_ge, were shown to decrease, but those of putatively pathogenic genera, e.g., Halomonas, Nesterenkonia, increased at the genus level. Furtherly, potentially altered metabolic pathways (e.g., biosynthesis of ansamycins and vancomycin group antibiotics) were revealed by functional predictions of intestinal microbiota.
Conclusion: This study highlighted intestinal microbial dysbiosis and prevalence of putatively pathogenic bacteria in cultured turtles under nitrite stress. Excessive levels of nitrite would alter the health status of aquatic animals by disrupting their intestinal microbiome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12312557 | PMC |
http://dx.doi.org/10.1186/s12866-025-04198-8 | DOI Listing |
J Anim Sci
September 2025
Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna 1210, Austria.
It is helpful for diagnostic purposes to improve our current knowledge of gut development and serum biochemistry in young piglets. This study investigated serum biochemistry, and gut site-specific patterns of short-chain fatty acids (SCFA) and expression of genes related to barrier function, innate immune response, antioxidative status and sensing of fatty and bile acids in suckling and newly weaned piglets. The experiment consisted of two replicate batches with 10 litters each.
View Article and Find Full Text PDFVet Med Sci
September 2025
Department of Pharmacology and Toxicology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh.
The emergence of antimicrobial resistance (AMR) Escherichia coli in poultry farming is a growing global public health concern, particularly in Bangladesh, where the use of antibiotics remains largely unregulated. This study aimed to determine the prevalence and AMR patterns of E. coli isolated from broiler chickens in Sylhet district of Bangladesh and to investigate the network of coexisting resistance traits among the isolates.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Unlabelled: Severe acute pancreatitis (SAP) is characterized by systemic inflammation and intestinal barrier dysfunction and is often associated with gut microbiota dysbiosis. Rifaximin, a gut-specific non-absorbable antibiotic, is known to modulate the gut microbiota. Here, we investigated rifaximin's effects and mechanisms in SAP using murine models and a single-center, open-label, randomized controlled trial (Chinese Clinical Trial Registry: ChiCTR2100049794).
View Article and Find Full Text PDFFront Microbiol
August 2025
State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
Autism spectrum disorders (ASD), a group of neurodevelopmental disorders characterized by the core symptoms of impaired social communication and stereotyped behaviors, is strongly associated with dysregulated microbiota-gut-brain axis. Emerging evidence suggests that , which showed reduced abundance in ASD cohorts, holds therapeutic potential, though its interaction with host remain unexplored. Here, we investigated the efficacy and molecular basis of 4P-15 (4P-15) in BTBR /J (BTBR) mice, an idiopathic ASD mouse model.
View Article and Find Full Text PDFFront Microbiol
August 2025
College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China.
Background: Maternal dietary intervention utilizing complex additives rich in β-carotene has demonstrated the capacity to enhance embryonic intestinal development and influence microbial composition in offspring. Nevertheless, the extended impact of maternal β-carotene inclusion on the intestinal health of post-hatching chicks is still not fully elucidated.
Objective: This research aimed to evaluate the impacts of maternal β-carotene supplementation on the intestinal development and microbial communities in chicks after hatching.