98%
921
2 minutes
20
, a versatile human pathogen, significantly impacts global health causing a broad spectrum of medical conditions that range from minor skin infections to life-threatening diseases. The clinical importance of is underscored by its resistance to multiple antibiotics and formation of biofilms, providing protection against antimicrobials and immune responses. To date, the identification of antimicrobial-resistant (AMR) strains, such as methicillin-resistant (MRSA) and vancomycin-intermediate (VISA), requires time-consuming and expensive methodologies, including culture-based, molecular, and phenotypic techniques. Previously, we developed a paper-based ratiometric sensor array composed of fluorescent sensor dyes (3-hydroxyflavone derivatives) pre-adsorbed on paper microzone plates. Combined with machine learning algorithms such as neural networks, this sensor effectively discriminated 16 bacterial species and determined their Gram status. In this study, we evaluate its ability to distinguish antibiotic-resistant strains and their biofilms. Our results demonstrate that the sensor array, in conjunction with LDA and neural networks, successfully differentiated three common laboratory MRSA strains from three methicillin-susceptible (MSSA) strains with 82.5% accuracy. Furthermore, using support vector machines, this sensor was able to distinguish and categorically classify MRSA, MSSA, and VISA clinical isolates with 97.5% accuracy. Remarkably, beyond distinguishing planktonic cultures, this sensor array demonstrated a formidable capability to discriminate AMR biofilms, achieving over 80% accuracy. Combined, the results of this study highlight the paper-based sensor array's significant potential as a robust diagnostic tool to accurately, rapidly, and easily identify drug-resistant strains in clinically relevant settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12306193 | PMC |
http://dx.doi.org/10.1016/j.microc.2024.111395 | DOI Listing |
ACS Sens
September 2025
School of Physics and Electric Engineering, Linyi University, Linyi 276000, China.
In this study, employing a 2D electrodeposition in situ assembly method, a high-performance HS sensor based on a p-n type CuO-CuFeO heterostructure ordered nanowire arrays was successfully fabricated on silicon substrates. Compared to CuO, CuO-CuFeO nanowire arrays exhibits an ideal interfacial barrier structure and higher initial resistance, with a response to 10 ppm of HS at room temperature (20 ± 3 °C) increased by 225 times and a response time reduced by over 2400 s. The sensor demonstrates exceptional sensitivity (LOD = 10 ppb; response = 234.
View Article and Find Full Text PDFAnal Chem
September 2025
School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
Abnormal glycosylation is widespread in cancer, and the overexpression of glycoantigens is a manifestation of glycosylation abnormalities. Tn antigen, sTn antigen, and T antigen are known as tumor-associated glycoantigens, and their expression varies in different tumors or subtypes of the same tumor. Therefore, simultaneous detection of these three glycoantigens is of great significance for the diagnosis of tumors.
View Article and Find Full Text PDFTalanta
September 2025
Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Department of Chemistry, Karaman, 70100, Turkey.
Biogenic amines (BAs) are organic nitrogen compounds formed through microbial decarboxylation of amino acids during food spoilage and biological metabolism. Therefore, the development of rapid, selective, and cost-effective detection strategies for BAs is significant for ensuring food safety and quality. In this study, a new dicyanoisophorone-based fluorescent probe (IPC) was developed, capable of fluorescence detection of aliphatic primary amines (e.
View Article and Find Full Text PDFNano Lett
September 2025
School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China.
Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, 510641, China.
Recently, flexible airflow sensors have attracted significant attention due to their impressive characteristics and capabilities for airflow sensing. However, the development of high-performance flexible airflow sensors capable of sensing airflow over large areas remains a challenge. In this work, it is proposed that a hair-like flexible airflow sensor, based on laser direct writing and electrostatic flocking, offers an efficient technology for airflow sensing.
View Article and Find Full Text PDF