98%
921
2 minutes
20
This review provides an in-depth exploration of Janus materials based on natural biomacromolecules (polysaccharides, proteins, and lipids). The unique asymmetric structure and multifunctionality of Janus materials endow them with broad application potential in food science and beyond. In terms of preparation, the review details several cutting-edge methods, including Pickering emulsions, asymmetric acylation, one-pot methods, microfluidics, electrospinning, and electrospraying, which collectively support the efficient synthesis and functionalization of Janus materials. Regarding applications, these materials can serve as antimicrobial agents to extend food shelf-life, as thickeners and emulsifiers to enhance food stability and texture, and in the precise delivery of bioactive substances. Although previous studies have touched on the applications of Janus materials in food science, a comprehensive and systematic review focusing on those derived from natural biomacromolecules has been lacking. This review fills that gap, providing a crucial theoretical foundation. However, several challenges remain for the widespread application of Janus materials, including difficulties in scaling up production processes, issues with the repeatability and long-term stability of products, and complex regulatory requirements. Future research directions should focus on developing eco-friendly preparation strategies and addressing safety and regulatory concerns through interdisciplinary collaboration. Additionally, AI-driven material design holds promise for accelerating the optimization and innovation of Janus materials, thereby promoting their extensive application in food science and related fields to enhance food safety and quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408398.2025.2540050 | DOI Listing |
Beilstein J Org Chem
August 2025
Department of Chemistry, Institute of Natural Sciences, Federal University of Lavras, 37200-900, Lavras, MG, Brazil.
Cyclopropane is a significant alicyclic motif, widely utilized in medicinal chemistry, while fluorination serves as a powerful tool to modulate properties that enhance the performance of pharmaceuticals and materials. This quantum-chemical study explores the energetic implications of fluorinating cyclopropane, providing insights into molecular characteristics arising from the polar C-F bond. Isodesmic reactions revealed that the conversion of cyclopropane and methyl fluoride into mono-, di-, tri-, tetra-, penta-, and hexafluorinated cyclopropanes is exothermic, except for the all--1,2,3-trifluorocyclopropane ().
View Article and Find Full Text PDFBiomater Sci
September 2025
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, P.R. China. iamzgteng@
Breast cancer is the most prevalent malignancy worldwide, yet conventional therapies are invasive and prone to resistance, recurrence, and metastasis. Photodynamic therapy (PDT) is a promising noninvasive modality, but its efficacy is limited by tumor hypoxia and poor photosensitizer delivery. Here, we report a photoacoustic-imaging nanomotor, PPIC, which addresses these challenges through integrated functions of oxygen production, deep tissue penetration and photoacoustic imaging.
View Article and Find Full Text PDFNanoscale
September 2025
School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
The challenge of photocatalytic hydrogen production has motivated a targeted search for MXenes as a promising class of materials for this transformation because of their high mobility and high light absorption. High-throughput screening has been widely used to discover new materials, but the relatively high cost limits the chemical space for searching MXenes. We developed a deep-learning-enabled high-throughput screening approach that identified 14 stable candidates with suitable band alignment for water splitting from 23 857 MXenes.
View Article and Find Full Text PDFACS Macro Lett
September 2025
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
Poly(3-hexylthiophene) (P3HT)-based complex topological copolymers have attracted a great deal of attention for their unique electrical and optical properties. In this contribution, the P3HT-based Janus fibers with controlled lengths were innovatively prepared by sequential crystallization-driven self-assembly (CDSA) of poly(--butylstyrene)--polyisoprene--poly(3-hexylthiophene) (PBS--PI--P3HT) triblock copolymer, cross-linking of the interlayer PI region, and dissociation of fibers in good solvent. The comprehensive characterizations showed that the PBS/P3HT Janus fibers have nearly half the width of PBS--PI--P3HT fibers and fiber lengths close to or slightly shorter than those of PBS--PI--P3HT fibers, indicating that the Janus fibers with adjustable lengths could be prepared in a large window range.
View Article and Find Full Text PDFFood Res Int
November 2025
College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China. Electronic address:
For recovering whey soybean protein (WSP) from soybean whey wastewater (SWW) in food industry, a foam separation method for separating WSP by using temperature-responsive Janus sheets (MF-JNSs-PN) as foam stabilizer was established. MF-JNSs-PN was prepared by grafting the temperature-responsive polymer PNIPAM onto one side of the sheet inorganic material using BSA@Cu(PO)-MF as the template. MF-JNSs-PN has a good ability to stabilize the foam due to inducing the hydrophilicity and hydrophobicity transition by adjusting the temperature.
View Article and Find Full Text PDF