Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

It is important to accurately characterize the plane-stress state of pipe walls for evaluating the bearing capacity of the pipe and ensuring the structural safety. This paper describes a novel ultrasonic technique for evaluating anisotropic pipe-wall plane stresses using three-directional longitudinal critical refracted (LCR) wave time-of-flight (TOF) measurements. The connection between plane stress and ultrasonic TOF is confirmed by examining how the anisotropy of rolled steel plates affects the speed of ultrasonic wave propagation, which is a finding not previously documented in spiral-welded pipes. Then based on this relationship, an ultrasonic stress coefficient calibration experiment for spiral-welded pipes is designed. The results show that the principal stress obtained by the ultrasonic method is closer to the engineering stress than that obtained from the coercivity method. And, as a nondestructive testing technique, the ultrasonic method is more suitable for in-service pipelines. It also elucidates the effects of probe pressure and steel plate surface roughness on the ultrasonic TOF, obtains a threshold for probe pressure, and reveals a linear relationship between roughness and TOF. This study provides a feasible technique for nondestructive measurement of plane stress in anisotropic spiral-welded pipelines, which has potential application prospects in the health monitoring of in-service pipelines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12298884PMC
http://dx.doi.org/10.3390/s25144371DOI Listing

Publication Analysis

Top Keywords

ultrasonic method
12
pipe walls
8
ultrasonic
8
plane stress
8
stress ultrasonic
8
ultrasonic tof
8
spiral-welded pipes
8
in-service pipelines
8
probe pressure
8
stress
5

Similar Publications

Chia seed mucilage biosorbent synergism with hydrophobic iron (III)-natural phenolic nanoparticles for dispersive solid-phase extraction of tetracycline residues in milk and honey samples before HPLC analysis.

Food Chem

September 2025

Department of Medical Science, Mahidol University, Amnatcharoen Campus, Amnat Charoen, 37000, Thailand; Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. Electronic address:

This study utilized the synergistic effectiveness of chia seed mucilage and iron (III)-natural phenolic nanoparticles as biosorbents for the first time in the dispersive solid-phase extraction (DSPE) of oxytetracycline, tetracycline, chlortetracycline, and doxycycline followed by HPLC-UV quantification. An in-situ iron (III)-natural phenolic solid adsorbent was created using natural phenolics found in the copper pod tree bark. An ultrasonic-assisted extraction was performed to enhance the extraction efficiency of DSPE-based biosorbents.

View Article and Find Full Text PDF

Objective: Aim: To evaluate the possibility of using cataract phacoemulsification with simultaneous intraocular lens (IOL) implantation in patients with age-related cataract (ARC) combined with pseudoexfoliation syndrome (PES) as an algorithm for the pseudoexfoliation glaucoma (PEG) prevention..

Patients And Methods: Materials and Methods: A retrospective case-control study was conducted using data from medical records of 610 outpatients (813 eyes) with ARC aged from 49 to 79 years (average age 69 ± 3 years).

View Article and Find Full Text PDF

Skin-adaptive focused flexible micromachined ultrasound transducers for wearable cardiovascular health monitoring.

Sci Adv

September 2025

State Key Laboratory for Manufacturing System Engineering, State Industry-Education Integration Center for Medical Innovations, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Shaanxi Innovation Center for Special Sensing and Testing Technology in Extreme En

Continuous monitoring of cardiovascular vital signs can reduce the incidence and mortality of cardiovascular diseases, yet cannot be implemented by current technologies because of device bulkiness and rigidity. Here, we report self-adhesive and skin-conformal ultrasonic transducer arrays that enable wearable monitoring of multiple hemodynamic parameters without interfering with daily activities. A skin-adaptive focused ultrasound method with rational array design is proposed to implement measurement under wide ranges of skin curvatures and depths with improved sensing performances.

View Article and Find Full Text PDF

Hand gesture recognition(HGR) is a key technology in human-computer interaction and human communication. This paper presents a lightweight, parameter-free attention convolutional neural network (LPA-CNN) approach leveraging Gramian Angular Field(GAF)transformation of A-mode ultrasound signals for HGR. First, this paper maps 1-dimensional (1D) A-mode ultrasound signals, collected from the forearm muscles of 10 healthy participants, into 2-dimensional (2D) images.

View Article and Find Full Text PDF

Widefield acoustics heuristic: advancing microphone array design for accurate spatial tracking of echolocating bats.

BMC Ecol Evol

September 2025

Lehrstuhl für Zoologie, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann Strasse 4, Freising, 85354, Germany.

Accurate three-dimensional localisation of ultrasonic bat calls is essential for advancing behavioural and ecological research. I present a comprehensive, open-source simulation framework-Array WAH-for designing, evaluating, and optimising microphone arrays tailored to bioacoustic tracking. The tool incorporates biologically realistic signal generation, frequency-dependent propagation, and advanced Time Difference of Arrival (TDoA) localisation algorithms, enabling precise quantification of both positional and angular accuracy.

View Article and Find Full Text PDF