The Improvement Effects of Intercropping Systems on Saline-Alkali Soils and Their Impact on Microbial Communities.

Microorganisms

State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan 250100, China.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Saline-alkali soil has poor fertility and low organic matter content, which are key factors that limit agricultural productivity. Intercropping systems can enhance biodiversity in farmlands, thereby increasing the organic matter content. During this process, soil microorganisms respond to environmental changes. Therefore, we conducted a three-year intercropping enhancement experiment using saline-alkali soil. To avoid nutrient and microbial differences caused by the varying nutrient demands of different crop types, we systematically sampled the tillage layer of the soil (0-20 cm) from the subsequent crop (wheat season) in the intercropping systems. We found that compared to the control group, the three intercropping systems significantly increased the nutrient content in saline-alkali soil, including total nitrogen, total phosphorus, total potassium, organic matter, available nitrogen, and available potassium. Notably, there were significant increases in total nitrogen, organic matter, and available potassium. The intercropping systems had varying effects on the alpha and beta diversities of soil bacteria and fungi. Specifically, the effect of intercropping on fungal alpha diversity was significantly greater than that on bacterial alpha diversity, whereas its effect on bacterial beta diversity was greater than that on fungal beta diversity. Additionally, intercropping influenced microbial community composition, increasing the abundance of and and decreasing the abundance of . It also increased the abundance of and and decreased the abundance of . Total nitrogen and soil organic matter were identified as the primary environmental factors that significantly affected bacterial community composition; however, they had no significant impact on fungal communities. Intercropping had different effects on the fungal and bacterial networks. It increased the stability and complexity of the bacterial network. However, although it improved the stability of the fungal network, intercropping reduced its complexity. In summary, intercropping with leguminous plants is an effective way to enhance soil nutrients, particularly organic matter, in saline-alkali soils. Simultaneously, intercropping affects the soil microbial community structure of subsequent crops; however, the responses of bacteria and fungi to intercropping are significantly different. The results of this study provide data support for improving saline-alkali land through planting systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12300658PMC
http://dx.doi.org/10.3390/microorganisms13071436DOI Listing

Publication Analysis

Top Keywords

organic matter
24
intercropping systems
20
intercropping
13
saline-alkali soil
12
total nitrogen
12
soil
9
saline-alkali soils
8
matter content
8
bacteria fungi
8
fungi intercropping
8

Similar Publications

Microbial Physiological Adaptation to Biodegradable Microplastics Drives the Transformation and Reactivity of Dissolved Organic Matter in Soil.

Environ Sci Technol

September 2025

State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.

The turnover of dissolved organic matter (DOM) in soil regulated by biodegradable microplastics (MPs) has garnered much attention due to its profound impact on the storage and stability of soil organic matter. However, the transformation and reactivity of plant-derived and microbially derived DOM by microorganisms adapted to biodegradable MPs, and the involved microbial physiological processes, remain nearly unknown. Here, we added virgin and aged polylactic acid (PLA) and polyhydroxyalkanoate (PHA) to agricultural soils and incubated for 56 days.

View Article and Find Full Text PDF

Perovskite materials have revolutionized optoelectronics by virtue of their tunable bandgaps, exceptional optoelectronic properties, and structural flexibility. Notably, the state-of-the-art performance of perovskite solar cells has reached 27%, making perovskite materials a promising candidate for next-generation photovoltaic technology. Although numerous reviews regarding perovskite materials have been published, the existing reviews generally focus on individual material systems (e.

View Article and Find Full Text PDF

The construction of strong metal-support interactions (SMSI) is an effective strategy to enhance and control heterogeneous catalysts. However, conventional methods require pre-synthesized metal-loaded catalysts, followed by SMSI formation via high-temperature treatment under oxidative/reductive atmospheres, adsorbate-mediated treatment, and photo-treatment, adding complexity to catalyst synthesis and hindering continuous interfacial tuning. In this work, a "photobreeding" method is employed to treat ZnCdS, leveraging the UV-induced photochromic reaction of ZnS to generate metallic Zn at room temperature, while CdS remains inert.

View Article and Find Full Text PDF

Defect Engineering-Driven Electron Spin Polarization and Charge Transfer in MOFs for Enhanced Sonocatalytic Therapy.

Adv Mater

September 2025

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical

Sonocatalytic therapy (SCT) is a non-invasive tumor treatment modality that utilizes ultrasound (US)- activated sonocatalysts to generate reactive oxygen species (ROS), whose production critically dependent on the electronic structural properties of the catalytic sites. However, the spin state, which is a pivotal descriptor of electronic properties, remains underappreciated in SCT. Herein, a Ti-doped zirconium-based MOF (Ti-UiO-66, denoted as UTN) with ligand-deficient defects is constructed for SCT, revealing the important role of the electronic spin state in modulating intrinsic catalytic activity.

View Article and Find Full Text PDF

The photovoltaic performance of CuZnSn(S,Se) is limited by open-circuit voltage losses (ΔV) in the radiative (ΔV) and non-radiative (ΔV) limits, due to sub-bandgap absorption and deep defects, respectively. Recently, several devices with power conversion efficiencies approaching 15% have been reported, prompting renewed interest in the possibility that the key performance-limiting factors have been addressed. In this work, we analyze the sources of ΔV in these devices and offer directions for future research.

View Article and Find Full Text PDF