98%
921
2 minutes
20
The photovoltaic performance of CuZnSn(S,Se) is limited by open-circuit voltage losses (ΔV) in the radiative (ΔV) and non-radiative (ΔV) limits, due to sub-bandgap absorption and deep defects, respectively. Recently, several devices with power conversion efficiencies approaching 15% have been reported, prompting renewed interest in the possibility that the key performance-limiting factors have been addressed. In this work, we analyze the sources of ΔV in these devices and offer directions for future research. We find that ΔV, arising from bandgap fluctuations and Urbach tails, has been significantly suppressed, with values comparable to those of commercial Cu(In,Ga)(S,Se) solar cells. However, the recombination parameter J, which is more directly related to ΔV, shows only modest improvement and must be reduced by four to six orders of magnitude to compete with Cu(In,Ga)(S,Se). To approach the theoretical efficiency limit, future work should focus on more directly addressing deep defects and ΔV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41467-025-63345-x | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12417543 | PMC |
Nano Lett
September 2025
School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
Passivating detrimental defects is essential for improving perovskite solar cells (PSCs) performance. While hydrogen interstitials are often considered harmful, their role in defect passivation remains unclear. Using nonadiabatic molecular dynamics, we uncover a self-passivation mechanism between hydrogen (H) and bromine (Br) interstitials in all-inorganic CsPbBr perovskites.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China.
The donor/acceptor (D/A) interfaces in bulk heterojunction (BHJ) organic solar cells (OSCs) critically govern exciton dissociation and molecular diffusion, determining both efficiency and stability. Herein, we design a double-cable conjugated polymer, SC-1F, to insert into a physically-blended D/A system to optimize the interface. We have found that SC-1F spontaneously segregates to the interface through favorable miscibility and heterogeneous nucleation with the acceptor.
View Article and Find Full Text PDFAdv Mater
September 2025
Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Calle Catedrático José Beltrán 2, Paterna, 46980, Spain.
Formamidinium lead iodide perovskite compositions have a low open circuit voltage deficit and thus a higher power conversion efficiency (PCE) potential. However, their low bandgap makes it difficult to achieve a semitransparent perovskite solar cell (ST-PSC) with a high average visible transmittance (AVT) and thus, a high light utilization efficiency (LUE). Attaining a high AVT in such low bandgap perovskite‑based semitransparent solar cells requires the perovskite layer to be very thin (thickness < ≈100 nm) and the rear electrode to be made of a transparent conductive oxide.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87106, United States.
Defects significantly influence charge transport in CHNHPbI (MAPbI) perovskite solar cells, particularly at interfaces. Using quantum dynamics simulation, we reveal a distinct interstitial iodine (I) defect behavior at different positions in the TiO/MAPbI system. In the perovskite bulk-like region, I exhibits high mobility and dissociates detrimental iodine trimers, facilitating small-to-large polaron transition and promoting shallow trap formation.
View Article and Find Full Text PDFSmall
September 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
This study presents a novel carbazole derivative functionalized with hydroxy diphosphonic acid groups (HDPACz) as an efficient annealing-free hole transport layer (HTL) through strong bidentate anchoring to indium tin oxide (ITO). Compared to conventional mono-phosphonic acid counterparts, HDPACz demonstrates superior ITO surface coverage and interfacial dipole, effectively modulating the work function of ITO. Theoretical calculations reveal enhanced adsorption energy (-3.
View Article and Find Full Text PDF