Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study presents an innovative wedge-shaped inlet weir-type microfluidic chip designed to address common issues of clogging and inefficiency in microfiltration processes. Driven solely by centrifugal force, the chip integrates a crossflow separation mechanism and enables selective droplet sorting based on size, without the need for external pumps. Fabricated from PMMA, the device features a central elliptical chamber, a wedge-shaped inlet, and spiral microchannels. These structures leverage shear stress and Dean vortices under centrifugal fields to achieve high-throughput separation of droplets with different diameters. Using water-in-oil emulsions as a model system, we systematically investigated the effects of geometric parameters and rotational speed on separation performance. A theoretical model was developed to derive the critical droplet size based on force balance, accounting for centrifugal force, viscous drag, pressure differentials, and surface tension. Experimental results demonstrate that the chip can effectively separate droplets ranging from 0 to 400 μm in diameter at 200 rpm, achieving a sorting efficiency of up to 72% and a separation threshold (cutoff accuracy) of 98.2%. Fluorescence analysis confirmed the absence of cross-contamination during single-chip operation. This work offers a structure-guided, efficient, and contamination-free droplet sorting strategy with broad potential applications in biomedical diagnostics and drug screening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12300070PMC
http://dx.doi.org/10.3390/mi16070774DOI Listing

Publication Analysis

Top Keywords

microfluidic chip
8
wedge-shaped inlet
8
centrifugal force
8
droplet sorting
8
separation
5
open-type crossflow
4
crossflow microfluidic
4
chip
4
chip deformable
4
droplet
4

Similar Publications

Optical manipulation techniques have been widely applied in the biomedical field. However, the key issues limiting the efficiency of optical manipulation techniques are the weak driving force of optical scattering and the small working range of optical gradient forces. The optothermal Marangoni convection enables effective control of flow fields through optical means, and particle manipulation based on this mechanism offers advantages such as a wide working range, strong driving force, and high flexibility.

View Article and Find Full Text PDF

Organ-on-chip (OOC) technologies, also called microphysiological systems (MPS), offer dynamic microenvironments that improve upon static culture systems, yet widespread adoption has been hindered by fabrication complexity, reliance on polydimethylsiloxane (PDMS), and limited modularity. Here, a modular MPS platform is presented, designed for ease of use, reproducibility, and broad applicability. The system comprises layered elastomeric inserts for dual monolayer cell culture, which is clamped within a reusable acrylic cassette for perfusion studies.

View Article and Find Full Text PDF

Hydrodynamic focusing to synthesize lipid-based nanoparticles: Computational and experimental analysis of chip design and formulation parameters.

J Control Release

September 2025

Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario M5B 1T8, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M

Microfluidic hydrodynamic focusing (HF) has emerged as a powerful platform for the controlled synthesis of lipid nanoparticles (LNPs) and liposomes, offering superior precision, reproducibility, and scalability compared to traditional batch methods. However, the impact of HF inlet configuration and channel geometry on nanoparticle formation remains poorly understood. In this study, we present a comprehensive experimental and computational analysis comparing 2-inlet (2-way) and 4-inlet (4-way) HF designs across various sheath inlet angles (45°, 90°, 135°) and cross-sectional geometries (square vs.

View Article and Find Full Text PDF

Microfluidics-assisted spatially barcoded microarray technology offers a high-throughput, low-cost approach towards spatial transcriptomic profiling. A uniform barcoded microarray is crucial for spatially unbiased mRNA analysis. However, non-specific adsorption of barcoding reagents in microchannels occurs during liquid transport, causing non-uniform barcoding in the chip's functional regions.

View Article and Find Full Text PDF

A directional self-priming continuous-driven compartmentalized microfluidic chip for multiplexed pathogen detection.

Analyst

September 2025

Research Centre for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China.

Rapid and efficient screening of foodborne pathogens is crucial for preventing bacterial spread and food poisoning. However, developing a multi-detection method that is easy to operate, offers good stability, and achieves high efficiency remains an enormous challenge. Existing multiplexed nucleic acid detection methods suffer from complex designs, leading to complicated operations, and non-robust sample introduction, causing primer/probe crosstalk and false-positive results.

View Article and Find Full Text PDF