98%
921
2 minutes
20
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent to traditional textile preforms. Six distinct braided structural units (types 1-6) were devised based on periodic trigonometric functions (Y = A sin(12πX)), and integrated with shape memory polylactic acid (SMP-PLA), thereby achieving a synergistic combination of topological architecture and adaptive response characteristics. Compression tests reveal that reducing strip density to 50-25% (as in types 1-3) markedly enhances energy absorption performance, achieving a maximum specific energy absorption of 3.3 J/g. Three-point bending tests further demonstrate that the yarn amplitude parameter A is inversely correlated with load-bearing capacity; for instance, the type 1 structure (A = 3) withstands a maximum load stress of 8 MPa, representing a 100% increase compared to the type 2 structure (A = 4.5). A multi-branch viscoelastic constitutive model elucidates the temperature-dependent stress relaxation behavior during the glass-rubber phase transition and clarifies the relaxation time conversion mechanism governed by the Williams-Landel-Ferry (WLF) and Arrhenius equations. Experimental results further confirm the shape memory effect, with the type 3 structure fully recovering its original shape within 3 s under thermal stimulation at 80 °C, thus addressing the non-reusability issue of conventional energy-absorbing structures. This work establishes a new paradigm for the design of impact-resistant aviation components, particularly in the context of anti-collision structures and reusable energy absorption systems for eVTOL aircraft. Future research should further investigate the regulation of multi-stimulus response behaviors and microstructural optimization to advance the engineering application of smart textile metamaterials in aviation protection systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12298524 | PMC |
http://dx.doi.org/10.3390/ma18143371 | DOI Listing |
Inorg Chem
September 2025
College of Chemistry and Materials Science, The key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materia
Conventional acid-catalyzed acetalization faces significant challenges in catalyst recovery and poses environmental concerns. Herein, we develop a CeO-supported Pd single-atom catalyst (Pd/CeO) that eliminates the reliance on liquid acids by creating a localized H-rich microenvironment through heterolytic H activation. X-ray absorption near-edge structure and extended X-ray absorption fine structure analyses confirm the atomic dispersion of Pd via Pd-O-Ce coordination, while density functional theory (DFT) calculations reveal strong metal-support interactions (SMSI) that facilitate electron transfer from CeO oxygen to Pd, downshifting the Pd d-band center and optimizing H activation.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, Florida 32901, United States.
Merocyanine photoacids (MCHs) have found applications in chemical, material, energy, and biomedical areas, and are currently being investigated for industrial applications. Hydrolysis, relatively high dark acidity, and moderate solubility in water are the major concerns for their practical applications. Inspired by the structure of the cell membrane, we incorporated the most commonly used MCH into sodium dodecyl sulfate (SDS) micelles.
View Article and Find Full Text PDFChaos
September 2025
Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
The absorption of laser energy by plasma is of paramount importance for various applications. Collisional and resonant processes are often invoked for this purpose. However, in some contexts (e.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.
Covalent organic frameworks (COFs) have been emerging as versatile reticular materials due to their tunable structures and functionalities, enabled by precise molecular engineering at the atomic level. While the integration of multiple components into COFs has substantially expanded their structural complexity, the strategic engineering of diverse functionalities within a single framework the random distribution of linkers with varying lengths remains largely unexplored. Here, we report a series of highly crystalline mixed-length multivariate COFs synthesized using azobenzene and bipyridine as linkers, where tuning the ratio of linkers and incorporating palladium effectively modulates the balance between near-infrared (NIR) light absorption and catalytic sites for NIR-generation of hydrogen peroxide (HO).
View Article and Find Full Text PDFmBio
September 2025
Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China.
Unlabelled: Fungal degradation of cellulose facilitates the sustainable harnessing of biosphere energy and carbon cycling. is one of the basidiomycetes with the largest number of hydrolytic enzymes in its genome. The mycelium of degrades cellulose through the production of substantial amounts of cellulase, enabling the absorption of carbon sources and nutrients essential for fruiting body development.
View Article and Find Full Text PDF