3D printing of structural bionic and functionalized hydrogels for the construction of macroscale human cardiac tissues.

Biomaterials

National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China; School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Key Laboratory of Biomedical Engineering of Gua

Published: February 2026


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Capturing the intricate structural, mechanical, and electrophysiological properties of the native heart in models is crucial for achieving efficient physiological pumping function; however, current approaches have shown limited success in replicating these features essential for producing tissue models on complex geometries that accurately mimic full cardiac function. Here, we present a novel hydrogel ink formulation combining a conductive, biocompatible ionic liquid with a photosensitive poly(vinyl alcohol)-based hydrogel, enabling 3D printing of biomechanically compatible heart valves and 3D tissue engineering scaffolds. These scaffolds mimic the helical and circumferential alignments characteristic of the ventricular and atrial muscle layers, respectively, and incorporate a hollow auxetic structure to achieve mechanical anisotropy. The precision of the printed double-sided grooved patterns provides microscale geometric cues, facilitating the self-organization and maturation of human cardiomyocytes into anisotropic muscular tissues in vitro. This approach enables the biofabrication of tissue-engineered ventricles and atria, with helically and circumferentially aligned models exhibiting biomimetic twisting, rolling dynamics, and electrophysiological properties. The resulting 3D-printed multichambered heart models-including both four-chambered and two-chambered configurations with integrated cardiac chambers, vessels, and valves-demonstrate anisotropic electrophysiological and contractile behaviors. This work establishes a scalable platform for engineering electromechanically coupled cardiac tissues, advancing in vitro organ modeling and providing a foundation for future regenerative applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2025.123573DOI Listing

Publication Analysis

Top Keywords

cardiac tissues
8
electrophysiological properties
8
printing structural
4
structural bionic
4
bionic functionalized
4
functionalized hydrogels
4
hydrogels construction
4
construction macroscale
4
macroscale human
4
cardiac
4

Similar Publications

Cardiac adipose tissue is normally present in the epicardium, but a variable amount can also be present in the myocardium, particularly in the subepicardial regions of the right ventricular anterolateral and apical regions. Pathological adipose tissue changes may occur in both ischemic (previous myocardial infarction) and nonischemic (previous myocarditis, arrhythmogenic cardiomyopathy, lipomatous hypertrophy of the interatrial septum, cardiac lipomas and liposarcomas) conditions, with or without extensive replacement-type myocardial fibrosis. Cardiac magnetic resonance is the gold standard imaging technique to characterize myocardial tissue changes and to distinguish between physiological and pathological cardiac fat deposits.

View Article and Find Full Text PDF

Loss of actin cytoskeleton control can hinder integral developmental and physiological processes and can be the basis for a subset of developmental defects. SHROOM3 is an actin binding protein, best characterized as being essential for neural tube closure in vertebrates. Shroom3 expression has also been identified in the developing heart, with some associated congenital heart defects.

View Article and Find Full Text PDF

The A20 binding inhibitor of nuclear factor-kappa B (NF-κB)-1 (ABIN-1) serves as a ubiquitin sensor and autophagy receptor, crucial for modulating inflammation and cell death. Our previous in vitro investigation identified the LC3-interacting region (LIR) motifs 1 and 2 of ABIN-1 as key mitophagy regulators. This study aimed to explore the in vivo biological significance of ABIN1-LIR domains using a novel CRISPR-engineered ABIN1-ΔLIR1/2 mouse model, which lacks both LIR motifs.

View Article and Find Full Text PDF

Resistance arteries, which include small arteries and arterioles, play essential roles in regulating blood pressure and tissue perfusion. Dysfunction in these arteries can lead to various cardiovascular conditions such as hypertension, atherosclerosis, and heart failure, as well as neurovascular conditions. The examination of human resistance arteries is crucial for understanding cardiovascular disease mechanisms and developing targeted therapeutic strategies.

View Article and Find Full Text PDF

Human cord blood (CB) myeloid progenitor reprogramming to a high-fidelity human induced pluripotent stem cell (hiPSC) state can be achieved using non-integrating episomal vectors and stromal signals. These conventional, primed CB-hiPSC lines can subsequently be chemically reverted with high efficiencies to a blastomere-like Tankyrase/PARP Inhibitor-Regulated Naive Stem Cell (TIRN-SC) state with functional totipotency. PARP-regulated TIRN-SCs are human stem cells with high epigenetic plasticity, stable epigenomic imprints, and have greater differentiation potency than conventional, lineage-primed hiPSCs.

View Article and Find Full Text PDF