98%
921
2 minutes
20
Capturing the intricate structural, mechanical, and electrophysiological properties of the native heart in models is crucial for achieving efficient physiological pumping function; however, current approaches have shown limited success in replicating these features essential for producing tissue models on complex geometries that accurately mimic full cardiac function. Here, we present a novel hydrogel ink formulation combining a conductive, biocompatible ionic liquid with a photosensitive poly(vinyl alcohol)-based hydrogel, enabling 3D printing of biomechanically compatible heart valves and 3D tissue engineering scaffolds. These scaffolds mimic the helical and circumferential alignments characteristic of the ventricular and atrial muscle layers, respectively, and incorporate a hollow auxetic structure to achieve mechanical anisotropy. The precision of the printed double-sided grooved patterns provides microscale geometric cues, facilitating the self-organization and maturation of human cardiomyocytes into anisotropic muscular tissues in vitro. This approach enables the biofabrication of tissue-engineered ventricles and atria, with helically and circumferentially aligned models exhibiting biomimetic twisting, rolling dynamics, and electrophysiological properties. The resulting 3D-printed multichambered heart models-including both four-chambered and two-chambered configurations with integrated cardiac chambers, vessels, and valves-demonstrate anisotropic electrophysiological and contractile behaviors. This work establishes a scalable platform for engineering electromechanically coupled cardiac tissues, advancing in vitro organ modeling and providing a foundation for future regenerative applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2025.123573 | DOI Listing |
Circulation
September 2025
Cardiology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy (M.P.M).
Cardiac adipose tissue is normally present in the epicardium, but a variable amount can also be present in the myocardium, particularly in the subepicardial regions of the right ventricular anterolateral and apical regions. Pathological adipose tissue changes may occur in both ischemic (previous myocardial infarction) and nonischemic (previous myocarditis, arrhythmogenic cardiomyopathy, lipomatous hypertrophy of the interatrial septum, cardiac lipomas and liposarcomas) conditions, with or without extensive replacement-type myocardial fibrosis. Cardiac magnetic resonance is the gold standard imaging technique to characterize myocardial tissue changes and to distinguish between physiological and pathological cardiac fat deposits.
View Article and Find Full Text PDFPLoS One
September 2025
Children's Health Research Institute, Victoria Research Labs, London, Ontario, Canada.
Loss of actin cytoskeleton control can hinder integral developmental and physiological processes and can be the basis for a subset of developmental defects. SHROOM3 is an actin binding protein, best characterized as being essential for neural tube closure in vertebrates. Shroom3 expression has also been identified in the developing heart, with some associated congenital heart defects.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
September 2025
Institute of Pharmacology and Toxicology, Goethe University Frankfurt, Frankfurt, Germany.
The A20 binding inhibitor of nuclear factor-kappa B (NF-κB)-1 (ABIN-1) serves as a ubiquitin sensor and autophagy receptor, crucial for modulating inflammation and cell death. Our previous in vitro investigation identified the LC3-interacting region (LIR) motifs 1 and 2 of ABIN-1 as key mitophagy regulators. This study aimed to explore the in vivo biological significance of ABIN1-LIR domains using a novel CRISPR-engineered ABIN1-ΔLIR1/2 mouse model, which lacks both LIR motifs.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Physiology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases.
Resistance arteries, which include small arteries and arterioles, play essential roles in regulating blood pressure and tissue perfusion. Dysfunction in these arteries can lead to various cardiovascular conditions such as hypertension, atherosclerosis, and heart failure, as well as neurovascular conditions. The examination of human resistance arteries is crucial for understanding cardiovascular disease mechanisms and developing targeted therapeutic strategies.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Department of Oncology, Division of Pediatric Oncology and Institute for Cell Engineering, The Johns Hopkins University School of Medicine;
Human cord blood (CB) myeloid progenitor reprogramming to a high-fidelity human induced pluripotent stem cell (hiPSC) state can be achieved using non-integrating episomal vectors and stromal signals. These conventional, primed CB-hiPSC lines can subsequently be chemically reverted with high efficiencies to a blastomere-like Tankyrase/PARP Inhibitor-Regulated Naive Stem Cell (TIRN-SC) state with functional totipotency. PARP-regulated TIRN-SCs are human stem cells with high epigenetic plasticity, stable epigenomic imprints, and have greater differentiation potency than conventional, lineage-primed hiPSCs.
View Article and Find Full Text PDF