98%
921
2 minutes
20
() is a transcriptional factor, consisting of basic helix-loop-helix (bHLH) and PER-ARNT-SIM (PAS) domains, that plays a central role in circadian clock activity. However, the precise roles of the BMAL1-PAS domain, a circadian rhythm-regulating structure, remain unexplored in monocytes. Here, we highlight the BMAL1-PAS domain as a key structure in monocyte pleiotropic functions by using human monocytic cell line THP-1. THP-1 cells lacking the BMAL1-PAS-B domain (THP-1#207) abrogated the circadian expression of core clock genes. THP-1#207 cells exhibited less proliferation, glycolysis and oxidative phosphorylation activity, and LPS-induced IL-1β production, but exhibited more production of LPS-induced IL-10 than THP-1 cells. A quantitative proteomics analysis revealed significant expression changes in ~10% metabolic enzymes in THP-1#207 cells compared to THP-1 cells, including reduction in a rate-limiting enzyme hexokinase2 (HK2) in the glycolytic pathway. Importantly, treatment of THP-1 with 2-deoxy-D-glucose (2-DG), an HK2 inhibitor, largely recapitulated the phenotypes of THP-1#207 cells. These findings suggest that the BMAL1-PAS-B domain is an important structure for the regulation of proliferation, cellular energetics, and inflammatory response in THP-1 cells, at least in part, via the control of glycolytic activity. Thus, the BMAL1-PAS-B domain may become a promising pharmacological target to control inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296023 | PMC |
http://dx.doi.org/10.3390/ijms26146737 | DOI Listing |
Arch Med Res
September 2025
Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan. Electronic address:
Background: Atherosclerosis, a leading cause of cardiovascular disease (CVD) mortality worldwide, is characterized by dysregulated lipid metabolism and unresolved inflammation. Macrophage-derived foam cell formation and apoptosis contribute to plaque formation and vulnerability. Elevated serum galectin-3 (Gal-3) levels are associated with increased CVD risk, and Gal-3 in plaques is strongly associated with macrophages.
View Article and Find Full Text PDFChem Biol Drug Des
September 2025
School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa.
Molecular hybridization of isoniazid with hydrophobic aromatic moieties represents a promising strategy for the development of novel anti-tubercular therapeutics. In this study, a series of hybrid molecules (5a-i) was synthesized by linking isoniazid with aromatic sulfonate esters via a hydrazone bridge. Molecular docking studies revealed that these compounds interact effectively with the catalytic triad of the InhA enzyme (Y158, F149, and K165), suggesting their potential as InhA inhibitors.
View Article and Find Full Text PDFCell Mol Immunol
September 2025
Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology; Taikang Center for Life and Medical Sciences; State Key Laboratory of Virology; Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, Hubei, 430071,
Upon DNA virus infection, cGAS senses viral DNA and triggers MITA (also called STING)-dependent induction of type I interferons (IFN-Is) and other cytokines/chemokines. IFN-Is further activate STAT1/2 to induce interferon-stimulated genes (ISGs) and the innate antiviral response. How the innate antiviral response is silenced in uninfected cells and efficiently mounts upon viral infection is not fully understood.
View Article and Find Full Text PDFImmunol Cell Biol
September 2025
Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Telangana, India.
The immune system uses a variety of DNA sensors, including endo-lysosomal Toll-like receptors 9 (TLR9) and cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These sensors activate immune responses by inducing the production of a variety of cytokines, including type I interferons (IFN). Activation of cGAS requires DNA-cGAS interaction.
View Article and Find Full Text PDFMol Immunol
September 2025
Department of Clinical Laboratory, The Affiliated Cancer Hospital of Xinjiang Medical University, Suzhou East Road No. 789, Urumqi, Xinjiang 830011, China. Electronic address:
Hypoxia plays a critical role in regulating the progression of non-small cell lung cancer (NSCLC) by modulating the tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs), important components of TIME, can be regulated by hypoxic conditions. Unfortunately, the molecular mechanisms by which hypoxia regulates TAMs in TIME to affect NSCLC progression has not been fully delineated.
View Article and Find Full Text PDF