Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Postoperative cognitive dysfunction (POCD) is driven in part by microglial activation and the resulting neuroinflammatory response. Emerging evidence suggests that microRNAs regulate key inflammatory pathways in the central nervous system. In this study, we examined the role of the mmu‑miR‑125a/TRAF6 signaling axis in microglial activation under inflammatory conditions induced by lipopolysaccharide (LPS) and surgical trauma and evaluated whether dexmedetomidine (DEX) modulates this pathway to alleviate POCD.

Methods: Murine microglial cells were treated with LPS to induce activation. Expression levels of mmu‑miR‑125a and TRAF6 were quantified by qRT‑PCR and Western blotting. Bioinformatic prediction of miRNA binding sites was performed, and a luciferase reporter assay was used to confirm direct targeting of TRAF6 by mmu‑miR‑125a. Adult mice underwent standardized surgical trauma to induce POCD. Brain tissues were analyzed for microglial activation markers, cytokine levels, and expression of mmu‑miR‑125a and TRAF6. DEX was administered in both and models. The effects on cytokine release, microglial activation, and the mmu‑miR‑125a/TRAF6 axis were assessed.

Results: Our findings revealed significant alterations in the expression levels of TRAF6 and mmu-miR-125a during LPS-induced microglial activation. Through bioinformatics analysis and experimental validation, we identified TRAF6 as a direct target of mmu-miR-125a. The mmu-miR-125a/TRAF6 axis was found to be crucial for regulating microglial activation both , using an LPS-induced model, and using a surgical trauma-induced POCD model. Moreover, we demonstrated that DEX, an alpha-2 adrenergic receptor agonist, effectively modulated the inflammatory cytokine release by targeting the mmu-miR-125a/TRAF6 axis in both models. The administration of DEX significantly suppressed microglial activation and TRAF6 expression, effects that were reversed by the inhibition of mmu-miR-125a.

Conclusion: Our study provides new insights into the molecular mechanisms underlying microglial activation and highlights the therapeutic potential of targeting the mmu-miR-125a/TRAF6 axis to alleviate neuroinflammation by the administration of DEX in POCD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12290372PMC
http://dx.doi.org/10.1515/med-2025-1236DOI Listing

Publication Analysis

Top Keywords

microglial activation
36
mmu-mir-125a/traf6 axis
12
microglial
10
activation
10
postoperative cognitive
8
cognitive dysfunction
8
signaling axis
8
surgical trauma
8
expression levels
8
mmu‑mir‑125a traf6
8

Similar Publications

Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.

View Article and Find Full Text PDF

Background: Ischemic stroke can damage the cerebral white matter, resulting in myelin loss and neurological deficits. Moreover, microglial activation plays an important role in ischemic stroke; therefore, inhibiting microglial activation has become an effective therapeutic target for ischemic stroke.

Objective: This study aimed to investigate the effects of electroacupuncture (EA) on microglial activation and polarization, and the role of oligodendrocyte genesis in myelin reformation after ischemic stroke.

View Article and Find Full Text PDF

Background: Retinopathy of prematurity (ROP), an oxygen-induced retinopathy (OIR), triggers a series of vascular lesions and inflammatory responses and results in visual impairment or even blindness. Triptolide (TP) possesses many pharmacological properties, including immunosuppressive and anti-tumour effects. However, the effects of TP on ROP and its underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Microglia regulate neuronal circuit plasticity. Disrupting their homeostatic function has detrimental effects on neuronal circuit health. Neuroinflammation contributes to the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD), with several microglial activation genes linked to increased risk for these conditions.

View Article and Find Full Text PDF

Microglial cells are key mediators of ethanol-induced neuroinflammation through the release of proinflammatory cytokines and activation of Toll-like receptors. Recently, the signaling pathway initiated by the interaction of the neurotrophic factors pleiotrophin (PTN) and midkine (MK) with receptor-type protein tyrosine phosphatase β/ζ (RPTPβ/ζ) has emerged as a pharmacological target in ethanol-induced neuroinflammatory and neurodegenerative processes. However, the underlying molecular mechanisms remain unclear.

View Article and Find Full Text PDF