Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Amphibians are increasingly threatened by human activities, with rice straw burning emerging as a significant yet underexplored hazard. This practice may release harmful polycyclic aromatic hydrocarbons (PAHs), disrupt ecosystems, and affect amphibians. However, the impact on tadpole microbiota and development remains unclear. This study used scanning electron microscopy (SEM) and chemical analysis to characterize straw ash toxicity, assessed rice straw aqueous extracts of ash (AEA; 0, 0.75, 1.5, 3, and 6 g L) on tadpoles survival, growth, and development, and analyzed skin and gut microbiota via Illumina sequencing. Within the AEA, 10 varieties of PAHs exhibited higher quantities, including acenaphthylene, acenaphthene, and anthracene. SEM revealed irregular, porous, layered ash particles. Higher AEA concentrations reduced survival, delayed development, and affected body mass. The alpha diversity of both skin and gut microbiota significantly varied among groups. Beta diversity analyses indicated substantial shifts in microbial community structure with increased AEA concentrations. Linear discriminant analysis (LEfSe) identified microbial taxa enrichment and shifts, including the increase of potentially pathogenic genera such as and in high-concentration groups. BugBase analysis showed significant phenotypic changes in microbial communities. Our findings expose rice straw ash as a silent, global toxin that disrupts amphibian microbiota, growth, and survival-redefining routine straw burning as a planetary biodiversity hazard and urging immediate, sustainable reforms to protect wetland ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12290308PMC
http://dx.doi.org/10.1002/ece3.71801DOI Listing

Publication Analysis

Top Keywords

rice straw
16
straw ash
12
straw burning
8
skin gut
8
gut microbiota
8
aea concentrations
8
straw
6
ash
5
exposure rice
4
ash alters
4

Similar Publications

Addressing the issues of slow decomposition and low nutrient release efficiency associated with traditional straw returning, this study innovatively applied ultrasound-assisted centrifugal separation technology to prepare submicron/nano-straw particles and systematically conducted a multi-scale investigation from microscopic to macroscopic levels. The core finding reveals that when the particle size reaches the 1 μm threshold, ultrasonic cavitation vigorously disrupts the straw structure, leading to efficient lignin removal (77.45 %) and a significant reduction in cellulose crystallinity, thereby fundamentally enhancing the degradation rate.

View Article and Find Full Text PDF

Burning rice straw contribute to Atmospheric Pollution, which makes it unsustainable in the long-run, but are still opted by farmers due to faster removal of residue. Lignocellulose Degrading Microorganisms, facilitating sustainable management, may accelerate the breakdown of various crop residues. A study comprised of twenty-one treatments including fungal strains, bacterial strains and microbial consortia.

View Article and Find Full Text PDF

This study investigated how different dietary roughages, Napier-Pakchong (NP), jumbo sorghum (JB), and rice straw (RS) fed to Holstein-Friesian (HF) crossbred cows affect the nutritional, techno-functional, and sensory properties of mozzarella cheese under tropical conditions in Bangladesh. Iso-nitrogenous (≈12.54% CP) and iso-energetic (ME ≈2.

View Article and Find Full Text PDF

Integration of diverse fertilisation strategies with water-saving irrigation techniques presents a promising sustainable agricultural practice, offering the potential to reduce greenhouse gases (GHGs) emissions, enhance carbon sequestration and boost crop yields. However, existing research on the influence of soil microorganisms on biogeochemical processes of GHGs is limited. Herein, we explored the microbial mechanisms influencing GHGs emissions through a 3-year field experiment and metagenomic sequencing conducted in southeastern China.

View Article and Find Full Text PDF

Background: Sotrovimab is a neutralising monoclonal antibody targeting the SARS-CoV-2 spike protein. We aimed to evaluate the efficacy and safety of sotrovimab in the RECOVERY trial, an investigator-initiated, individually randomised, controlled, open-label, adaptive platform trial testing treatments for patients admitted to hospital with COVID-19.

Methods: Patients admitted with COVID-19 pneumonia to 107 UK hospitals were randomly assigned (1:1) to either usual care alone or usual care plus a single 1 g infusion of sotrovimab, using web-based unstratified randomisation.

View Article and Find Full Text PDF